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Chapter 1

A brief overview of mathematical
image processing

1.1 What is an image?
1.1.1 Basics of images
Definition 1.1.1 (Image). In this course, an image I will be a function from some finite

set of pixels, which we will denote by V (for reasons which will eventually become clear),
into RY.

What is d? That depends on the type of image. There are three common cases. If the
image is a greyscale image then d = 1 and indeed we will typically constrain the values of
the image to lie in [0, 1].

If the image is a colour image then typically d = 3. The most common case is
for the three components of the image values (called the channels of the image) to refer
respectively to theamount of red, green, and blue at that pixel-thisis called an RGB image.
However, other decompositions of colour images exist, such as into hue, saturation, and
value channels (HSV) and into luma, blue chroma, and red chroma channels (YCbCr).
We will not in this course dwell on the details of these different colour spaces. Finally,
in the case of hyperspectral images the value each pixel will have a very large number of
channels, one for each of the spectral components measured. In such cases d will be very
large.

Figure 1.1: A greyscale image
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Figure 1.2: A colour image (far left) along with its R, G, and B channels. Image is
from the Microsoft Research Cambridge Object Recognition Image Database, available
athttps://www.microsoft.com/en-us/research/project/image-understanding/.

Note. It will often be useful to think of V as a subset of some domain Q C R2. Likewise,
it can be useful to think of the image 7 : V — R as being a restriction of a continuous
image 7 : Q — R

1.1.2 What do “natural” images look like?

However, not all functions on a set of pixels correspond to realistic images. Compare the
two images below.

Figure 1.3: Ordinary RGB image (left) vs. a random Gaussian function on the same pixel
set (right).

Question. What features do normal images have that white noise does not?

1.2 Image compression

Images are typically never actually stored as such functions, as for typical images such a
representation tends to be extremely redundant, and takes up a lot of memory.

A major topic in image processing is image compression, the task of storing an image
in a way that takes up much less space.

1.2.1 Lossy compression: JPEG

A straightforward approach to compressing an image is to throw away information that
the human eye can’t see. This is the basic idea behind JPEG compression. Very very
briefly, the idea of JPEG compression is to express our image J in a particular basis

I:a1(p1+a2g02+-~


https://www.microsoft.com/en-us/research/project/image-understanding/
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where the basis elements ¢; encode changes with a fixed frequency in the image (and
the a; can be computed using the Discrete Cosine Transform). This is analogous to
decomposing a signal into its distinct pitches. Since natural images don’t change very
frequently and the human eye can't see these very rapid changes, the higher frequency
components can be thrown away, giving a compression.

Note. Another lossy standard JPEG2000 use the same ideas but use a different basis (a
wavelet basis) for the decomposition.

For a very accessible description of how JPEG works, I recommend the following
YouTube video https://www.youtube.com/watch?v=0me3guaugOU. For a more detailed
account, see [Wal91].

1.2.2 Lossless compression: PNG

However, it is also possible to compress images without throwing away any information,
by exploiting redundancy. This is how file formats like PNG work. Even more briefly
than before: if you wanted to compress these lecture notes, you could do so by first
exploiting how often strings of letters are repeated to replace repetitions with references
to earlier strings, and then encoding what is left. PNG uses some clever tricks to apply
the same ideas to images. See the same YouTuber for a very good explanation https:
//www . youtube. com/watch?v=EFUYNoFRHQI. For a more detailed account, see [Roe99].

1.3 Inverse problems in imaging

Many of the most important tasks in image processing involve undoing something that has
happened to an image. These include:

* Image Reconstruction: The task of reconstructing an image from indirect and/or
noisy measurements.

* Image Registration: The task of aligning distorted images.

* Image Inpainting: The task of filling in gaps in an image.

See Figures 1.4 and 1.5 for examples of these tasks.

i

Figure 1.4: Example of image denoising, a special case of image reconstruction, using
the BM3D algorithm [MAF20]. Image is from the Microsoft Research Cambridge Object
Recognition Image Database. Left-to-right: original image, noised version of the original
image, and a BM3D denoising of the noised image.

1.3.1 Inverse problems

The general setting for all of these tasks is that of an inverse problem. We have some
observations y of an object x*, which are related via

y=T(x")+e (1.1)


https://www.youtube.com/watch?v=0me3guauqOU
https://www.youtube.com/watch?v=EFUYNoFRHQI
https://www.youtube.com/watch?v=EFUYNoFRHQI
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Figure 1.5: Example of image inpainting, reproduced from Lozes et al. [LEL14, Figure 9].

where 7 is the forward model, typically a linear map, and e is an error term (e.g. a
Gaussian random variable). Given y, 7, and the distribution of ¢, we seek to find x = x*.

Hadamard well-posedness
In [Had02], Hadamard gave three conditions for a mathematical model to be well-posed:

1. A solution should exist.
2. That solution should be unique.
3. The solution should vary continuously with the input.

However, is in general an ill-posed problem. The noise may bring y outside of the
image of 7, solutions may be far from unique for a given y, and even if 7 is invertible
and y lies in its image, the inverse map might be highly sensitive to noise. So we must
proceed in a clever way.

Tikhonov-Philips variational method

A key approach to solving such problems, deriving from pioneering work by Tikhonov
[Tik63] and Phillips [Phi62] in the 1960s, has been to solve a variational problem of the
form

argmin R(x) + AD(7 (x), y) (1.2)

where R is a requlariser, which encodes a priori information about the solution x, and D
is a distance term which enforces fidelity to our observed data, e.g.

D(T(x), y) = 17 (x) - ylI2.

D encodes information about the error e. The parameter A determines the trade-off
between what we a priori expect to see and what our observations depict.

To explain where comes from, it will be helpful to put things into a Bayesian
setting. Suppose that we have a random variable X describing the (unknown) true object
we seek to find, and a random variable Y describing our observations. Then by , X
and Y are related via

Y=T(X)+e (1.3)

where, for example, e ~ N(0, 02I). We then have an observation Y = y, and the idea
behind the Tikhonov-Phillips approach is to find an x which is the maximum a priori
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(MAP) estimate for X given this observation. That is, solving

argmax P(X = x|Y =y).
X

By Bayes’ theorem, this is equivalent to solving

argmax P(X = x)P(Y = y|X =x)
X

which by further simplifies to

argmax P(X = x)P(e =y — 7 (x)). (1.4)

The former term, P(X = x), is our prior probability for x to be the correct reconstruction. It
quantifies how “reasonable” a candidate reconstruction x is. Let us define our regulariser
R such that

P(X = x) =: e RO,

The latter term in depends entirely on our noise model for e, which will define our
data fidelity term via

P(e = y — T(x)) = e—AD(‘T(x),y).
For example, if e ~ N'(0, 0°I) then

]P(e =y- T(x)) — e—h%lly—’f(x)llﬁ.

Therefore, reduces to by taking —log of the objective functional.

1.3.2 Examples

Image denoising The simplest case of image reconstruction is denoising, i.e. the task
of removing noise from an image. Here we observe an image y which is related to our
“true” non-noisy image 1~ via:

y=I"+e

where ¢ is the noise. This is exactly the setting of with 7~ = id, the identity map.

Medical Imaging: MRI/CT Another important example of imaging that fits into this
framework perhaps surprisingly well is medical imagining. It would take too long to
get into the details of the physics involved, but the measurements of Magnetic Reso-
nance Imaging (MRI) turn out to just correspond to 7~ = FT the Fourier transform, and
Computed Tomography (CT) imaging corresponds to a Radon transform.

Inpainting Here 7 is a projection onto the undamaged region of the image.

1.3.3 Choosing R: The Rudin-Osher-Fatemi (ROF) denoising method

The real magic in this variational approach to image reconstruction is the choice of
regulariser, which as we saw encodes our prior model for what images “should” look
like. The original Tikhonov work used R(J) = %HI ||§ which leads to an easy to solve
minimisation problem but doesn’t really capture the essence of what an image should
be. One of the most important papers in image processing is that of Rudin, Osher, and
Fatemi [ROF92] from 1992, which proposed using fotal variation as a regulariser.
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What is total variation?

Definition 1.3.1 (Total Variation). Let Q C R" be open, and let f € LY(Q). Then the
total variation of f has the following variational definition:

TV(f) :=sup {Lf(x) div ¢(x) dx|p € CE(Q,R"), lollro) < l} .

The set of f € L}(Q) with TV(f) < oo is denoted BV(Q).

If f € C}(Q), Qis bounded, and Q has C! boundary, then the following identity holds

TV(f) = /Q IVF )2 dx. (15)

Proof (sketch). We note the following fact that under the assumed conditions

[ rwdivepw dx=- [ vr0-pw dx
Q Q

for all valid ¢. Thus we obtain the upper bound

/Qf(X)diWP(X) dx < /QVf(x)'@(X) dx S/QIIVf(x)Ile(P(x)IIz de/QIIVf(x)IIz dx.

Finally, we take valid ¢, approximating =V f/||Vf||2, which we can do because C! is
dense in L!. Then

. Vi) _
/g)f(x)dw&dx) dx —'/QVf(x) ( ||Vf(x)||2) dx_[)||Vf(x)||2 dx.

so this upper bound is the supremum. O

Definition 1.3.2 (Discrete Total Variation). Let 7 : V — R where V = {1,2,..., N}2.
Then, inspired by , we can define the total variation of I by:

N-1N-1
V) = > 3 @ = TP + Fijor — T2
i=1

=1

Here we can see that u is being conceptualised as a discrete approximation to a smooth
function defined on a set containing the lattice points. This is only one way to discretise
total variation, for other options see [Get12, §2].

Total variation as a regulariser

Earlier, we asked ourselves what ordinary images look like. The key thing we mentioned
was that they have regions of gradual change with the occasional sharp edge. That is,
on most of an ordinary image 7, VI will be small, with the exception of a small number
of edges. Put another way, in the discrete setting the gradient of the image will be
(approximately) sparse. Thus it makes sense to minimise total variation, understood as
the L! norm of the gradient, in order to encourage the gradient to be small. But why
minimise the L' norm? Why not the L? norm, which leads to a much easier optimisation
problem?
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Figure 1.6: Left-to-right: image of white square on black background, the same image
with Gaussian noise added, reconstruction with R(7) = %HI |2, and reconstruction with

R(T) = %HV.Z' ||%. Reproduced from [Cha00, Figure 1].

The reason is that minimising the L? norm does not promote sparsity in the gradient,
leading to very blurry edges (see Figure 1.6). From work in compressed sensing (Candes,
Romberg, and Tao [CRT06]), it was known that the L! norm is a good choice to promote
sparsity, making total variation the best pick.

Example ROF denoisings

.

Input f (PSNR 18.57) Denoised u with A =7 (PSNR 28.24)

Figure 1.7: ROF denoising of an RGB image, reproduced from [Get12, p.90].
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Input f (PSNR. 20.15) A =5 (PSNR 26.00) A= 10 (PSNR 27.87)

TV-regularized denoising with increasing values of A.

Figure 1.8: ROF denoisings of a greyscale image for various A, reproducing [Get12, p.89].

1.3.4 Choosing R: Deep learning approaches

Nowadays image processing is being taken over by deep learning methods. This course
will not be a course on deep learning, but I will briefly mention here that an important
avenue of current research in this area is using training data to learn a prior distribution,
and thereby learn R. Some example approaches for this are:

* The Plug-and-Play Prior (P?) [VBW13]: This eschews an explicit regulariser alto-
gether, via the observation that the steps involving the regulariser in most algo-
rithms look like denoisings, and replacing these with "plug-and-play" denoisings,
e.g. deep learned ones.

* Regularisation by denoising (RED) [REM17]: Has a similar idea, using a denoiser
D to define a regulariser R(x) = %(x, x — D(x)).

* Adversarial Regularisation [OS18]: Trains a neural net to distinguish ground
truth images from images which are pesudoinverses of measurements, and uses
this discriminator as a regulariser.

For a detailed overview, see Arridge et al. [AMOS19].
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1.4 Image segmentation and data clustering/classification

1.4.1 What is image segmentation?

The task of image segmentation is to split up an image into is component parts. For
example, in Figure 1.9 those parts might be the cows, the grass, and the sky.

Figure 1.9: Image of cows, from the Microsoft Research Cambridge Object Recognition
Image Database.

In practice, one might often only care about one of these parts, e.g. the cows, with
the rest of the image being regarded as “background”. For example, if one were looking
for a tumour in a medical scan, all one would care about is “tumour” vs. “background”.
This is called binary segmentation.

1.4.2 Data clustering and classification

Image segmentation is a special case of the task of data clustering/classification. Let
T : V — R’ describe not necessarily an image but just a collection of data points (indexed
by V) living in RY. Classification and clustering seek a function u : V. — L where L is a
finite set of labels. For binary segmentation, L = {0, 1}.

The difference between classification and clustering is that clustering is unsupervised,
it just uses the geometry of the data to sort into into labels. Classification is supervised
(or (semi-)supervised), which means we have an additional subset Z C V as training data,
with a known a priori labels f : Z — L to which we want u to conform. We say that the
task is semi-supervised when Z is really small relative to V.

Note. In image segmentation, V is the set of pixels in an image. But we could instead
take V to be a set of images in this setting (in which case £ would then become very large,
equal to the number of pixels times the number of channels in each image). The data
clustering task would then become the task of labelling this set of images, e.g. labelling
whether each image was of a “dog" or “cat". This is another very important task in image
processing.

1.4.3 Example: Mumford-Shah and Chan—Vese segmentation

The celebrated segmentation approach of Mumford and Shah [MS89] works as follows.
Suppose that we wish to segment a greyscale image which we shall represent by the
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continuous image 1 : O — R. We will do this by finding a piecewise smooth image
and a sum of contours I' minimising the Mumford—Shah functional

MS, (T, T) = /Q LINTCNR e A /Q (T(0) = T(x) dx + T

where |I'| denotes the total length of I and 7 is smooth on Q \ I. The segments here are
regions bounded by I'. The final term in the energy may seem innocuous, but it is in fact
very important, as it drives the segmentation to respect the geometry of the image.

Note. Although this segmentation energy is very natural, it turns out to be very compli-
cated to minimise in general. We will not discuss methods for minimising this energy in
this course, see e.g. [BZ87] for approaches.

A simplification of this problem considered by Mumford and Shah is to restrict J
to be piecewise constant on Q \ I, where I' = dC for some closed set C, simplifying the
problem to:

. _ 2
min /Q (T(x) = T2 dx + T, (16)

Theorem 1.4.1 ([MS12, Theorem 5.1]). Let 7 be a bounded measurable function on
Q. Then there exists I and J (piecewise constant on Q \ I') minimising

Proof. Beyond the scope of this course. m]

Chan and Vese [CV01] took as their starting point the piecewise constant Mumford-—
Shah model, and made two changes: first, x must take the following simplified form

T(x) = {cl, x €C,

¢y, otherwise.

Second, they added a penalisation for the area of C. Thus, the problem becomes

min p|dC|+ v Area(C) + Ay ‘/C(I(x) —c1)?dx + Ay /Q\C(I(x) — ¢)? dx. (1.7)

c1,62,C

Theorem 1.4.2. For C C Q a closed set, let yc:=1on Cand 0on Q\ C. Then

|9C| = TV(xc)-

Let our classifier u = yc. Then can be re-written:

min pTV(u) + ‘/Qvu(x) + Aqu(x) (T (x) = c1)? + Ao(1 — u(x))(T (%) — ¢2)? dx. (1.8)

€1,62,U

Then [CV01] solve this using level-set methods, which would bring us beyond the
scope of the course to describe.
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Definition 2.1.1 (Graph). A (finite) graph G is a (finite) set of vertices V which are linked
by edges E C V2. We will primarily be concerned with graphs with the following extra
properties:

e Simple: there is at most one edge between two vertices, and no edge connects a vertex
to itself.

* Weighted: every edge (i, j) € E has an associated weight w;; > 0. (For completeness,
we extend w to V2 via wij = 0if (i, ) ¢ E.)

* Undirected: if (i, j) € E then (j, i) € E, and w;j = wj;.

* Connected: Foreachi,j € V, there is a sequence of edges that connects i to j. (More
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generally, if this is true for some i, j € V then we say that i, j lie in the same connected
component of G. These connected components partition the graph, except for any
isolated vertices.)

Definition 2.1.2 (Adjacency matrix/weight matrix). The adjacency matrix or weight
matrix is the matrix w := (wj;), sometimes also denoted by A. It uniquely defines the graph,
up to a relabelling of the vertices (and a corresponding permutation of the row/columns of
the matrix).

Definition 2.1.3 (Degree of a vertex). For a vertex i € V, we define the degree of i by:
d; = Z Wij-
jev

For a connected graph, d; > 0 forall i € V. Butifd; > 0 for all i € V does not necessarily
mean that the graph must be connected, it only excludes isolated vertices.

Note. In this course, we will assume that d; > 0 for all i € V for all of our graphs.

2.2 Functions on graphs

Definition 2.2.1 (Vertex and edge functions on graphs). On G we define the spaces
(X CR):

Vi={u:V->R}, Vx ={u:V - X}, E:={p:E—>R}.

Since V is finite, we can interchangeably view elements of V and Vx as functions or as real
vectors. Next, we define the spaces of time-dependent vertex functions (where T C R an
interval)

Vier ={u:T -V}, Vxter i={u:T — Vx}.

Definition 2.2.2 (Graph gradient). Fori,j € V and u € V we define the graph gradient
of u at (i, ) to be:

ui—u;, (i,j)€E,
Vu)ij:=1{"' '
(Vi) {O, otherwise.

Definition 2.2.3 (Graph divergence). For i € V and ¢ € & we define the graph
divergence of ¢ at i to be:

(div ¢); := Z wij Pij

jev

Definition 2.2.4 (Inner products on our function spaces). For a parameter v € [0, 1]
we define the following inner products on V and &:

1
(U, 0)y, = Z uiv;d;, (p,0)s := 2 Z ©ijOijwij 2.1)
ieV i,jeVv
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and define the inner product on Vier (or Vx te1):

(1, 0)rer = /T (), o)y, dt = )" 1,012

eV

where (-, *)i2(;g) 18 the standard continuum L? inner product. These inner products induce
norms || - lv.r, || - e, and || - ||er in the usual way.

Definition 2.2.5 (L? space on a graph). We define the L? space:

LZ(T;(V) = {u € Vier | ||ullter < oo},

which we will consider as a normed space with norm || - ||ter. We also define the local L?
space:
Lo (T;V) = {u € Vier[Va < b € T, ulqp) € L*((a,b);V)}.

Proposition 2.2.1. Forall u € V and ¢ € & such that ¢;; = —¢j;,

—(div @, u)y, = (@, Vil)s.
Proof. Expanding out the definition of (div ¢, u) o:
—Z(diV Plini = = Z wijpijui = Z Wij @it
iev ijev ijev
1
=5 Z Wijpjitki + WjiPijlh;
i,jev

1
=5 Z wij@ij(uj — u;) = (@, Vu)g.

i,jev

2.3 The graph Laplacian

The most important graph operator for this course will be the graph Laplacian, defined
as follows.

Definition 2.3.1 (Graph Laplacian). For a graph G = (V,E, w) with |V| = N, define
D := diag(d) (i.e. Dj; := d;, and D;; := 0 otherwise) to be the degree matrix of G. Then
for parameters r, s € R, we define the graph Laplacian of G fo be the operator represented
by the matrix:

L0 :=D7(D - w)D™. 2.2)
That is
_ Uj uj
=i T (- )
jev i j

This operator can be thought of as a discrete diffusion operator on the graph, or
simply as a matrix Lg’s) € RN*N_ When it is clear from context, N and (r, s) may be
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omitted. Common choices of (r,s) are: (0,0), the combinatorical Laplacian, also called
the unnormalised Laplacian; (1,0), the random walk Laplacian; and (1/2,1/2), the symmetric
normalised Laplacian.

Exercise 1. Let u; < u; for all j € V such that w;; > 0 (i.e., i is a local minimiser of u).
Show that (L"Ou); < 0.

Exercise 2. Show that
(L%, )y s =(VD5u, VD ™*v)g.

Exercise 3. Why do we call the matrix £*) a Laplacian?

I Proposition 2.3.1. L) jg self-adjoint with respect to (:, -} ,—s.
Proof.

(u, LYy, = (u, D LOVD0)y g
= (D7 LOYD ™, )y g
= (0, D LOYD )y g
= (U/ Ds_rD_s~£(O'O)D_su>’V,r—s = <U, L(V's)u>"V,r—s-

Proposition 2.3.2. Forall 7,s € R, L% is similar to L(("+9)/2(+9)/2) Tt follows that
forallr,s e R

i. £ is similar to a diagonal matrix A.
ii. There exist U,V such that L) = UAVT and VTU = UVT = I.
iii. Forall r,s € R, L) ig positive semi-definite with respect to (-, -)/,—s, and
hence every entry in A is non-negative.

Proof. 1t is easy to check that

L(r,s) — D—(r—s)/2L((r+s)/2,(r+s)/2)D(r—s)/Z.

i. L£+)/2,(+5)/2) ig 3 real symmetric matrix, so there exists ® an orthogonal matrix
and A a diagonal matrix such that £+3)/2(+)/2) = ®ADT. Let U := D=9/,
Then £ = UAU.
ii. LetV := DU=9/2@, Then L") = UAVT,VTU = &7 = [,and UVT = D-=92ppT D(r-5)/2 =
I.
iii. Note that
<u/~£(y's)u>(v,r—s — (u,£(s,s)u>(v/0 — uTL(S’S)u

It follows from that

1Y i\

T p(s,5),, _ Ui j

Wl L= 3 ) “ff(d—?‘ﬁ) 20
i,j=1 1 ]

for all u € V. Hence if L% u = Au then Adu,u)y —s = 0andso A > 0.
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2.4 The spectrum of the graph Laplacian

From now on, we denote by

1) L@ (N)
0<AY SAY <--- <Ay
the eigenvalues of Lg’s), with corresponding eigenvectors

E g eV,

Here, we omitted the dependence on (7, s) for ease of notation. When it is clear from
context, we also omit the dependence on N.

The value A?) is called the algebraic connectivity or Fiedler value. For a connected graph
this value is strictly positive. The associated eigenvector is called the Fiedler vector.

We note the following spectral properties of L.

Theorem 2.4.1. 1. The smallest eigenvalue AV of £ is zero.

2. This eigenvalue has multiplicity equal to the number of connected components
and has corresponding eigenvectors & ®) o D3 Xs,, where Sy are the connected
components.

—(r+s)

3. The spectral radius p(L£) of L is bounded above by 2 max;ey d} (

Exercise 4. Prove the above properties.

Figure 2.2: An example of a disconnected graph (left) and that same graph with nodes
coloured according to the value of the Fiedler vector at that node (right).

2.5 Graph diffusion

Theorem 2.5.1 (Matrix exponential). For a square matrix A, define the matrix expo-
nential of A to be the matrix:

o0
-3
n=0

The matrix exponential has a number of key properties:

| —

,A”:I+A+%A2+-~~

N

a. If A=UBU™!, then e/ = UePU .
b. For A € R™" if A is symmetric then e” is positive definite.
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Figure 2.3: The graph from with an extra edge added to make it connected
(left) and that same connected graph with nodes coloured according to the value of the
Fiedler vector at that node (right).

10! 4 o 10! + o
] .......ooo.o'° ] ........oooooo
] oe®’ ] 0o’
[ ] [ ]
1004 o 1004 o
107 - 10 > "
0 I I I I I I I I I I I I O ?\ I I I I I I I I I I I I
123 5 7 91113151719212325 123 5 7 91113151719212325

Figure 2.4: The spectra of the (unnormalised) graph Laplacians of the graphs from
(left) and (right), plotted on a (crunched) log scale to emphasise the
change in the second eigenvalue, indicated by a square marker.

c. If A and B commute, then

In particular, (e?)™! = e~

d. 4(et4) = Aet.
e. Define the operator norm of a matrix A € R™*"

|Ax]2
lA]l := X .
xeR\{0} [lx]|2

Then if A € R™" symmetric with largest positive eigenvalue A, then
llell = e

f. If A € R™" is self-adjoint with respect to some inner product (-, )y, i.e.
(Au,v)y = (u, Av)y for all u,v € RR", then e/ is self-adjoint with respect to

<'/'>H-
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Symmetric
Graph Laplacian Graph Laplacian

Second Eigenvector Second Eigenvector

l.f"‘._‘__
\j\""‘-—‘h—hl A ey
s ¥
i '$ L
o,

Third Eigenvector

Third Eigenvector

.'I i
: L]
LU e
Fourth Eigenvector Fourth Eigenvector

Figure 2.5: Eigenvectors of L9 (left) and £1/21/2) (right) for a graph built on the cow
image from . Figure reproduced from [BF12, Fig. 2.1].
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Proof.  a.
e =T+ UBU + %uszu—l o
=U(I+B+%BZ+---)U—1
=uefut.

b. Since A is real and symmetric, A = UAU! for U € R™" orthogonal and A € R"™"
diagonal. Hence e/ = Ue”UT and so vTev = (UTv)TerUTv > 0, since e’ is a
diagonal matrix with diagonal entries e’ii > 0.

c. Since A and B commute, we have the binomial expansion

n

(A+By =) (Z)A’B"—’.

r=0

Hence

where the penultimate equality follows because (m, k) = (r,n — r) if and only if
r=mandn=m+k.

d ja_d 1o, 13,3
dte = I+tA+2tA +6tA + -

1
:A+tA2+§t2A3+~~-
= Aet4.
e. Asin (b), e# = UeAUT and hence

lle x|l _ [Ue’x]|, _ lle® x|l "
xeRM\{0} |lx|l2 xerm\{oy [[Ux|l2  xern\{oy [lx]2 i

where we have used that ||Ux||2 = ||x||2 since U is orthogonal.
f. Itis easy to check by induction that A" is self-adjoint for all 7, and hence

00 00

1 1
(ehu, o) = ) — (A", o) = ) —(u, Ao = u, e o).
n=0 n=0
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Note. Symmetry is important for (b). Let

A=t )-ufr 2 )un

n 0 0 -im
Therefore '
A e’ 0 -1 -1
e =U U =uE=nuT =-1
0 e
is negative definite. Commutativity is important for (c). Let
10 10
A—(O O) and B—(1 0).

Then if we ask MatLaB to compute these:
eAYB — e? 0
3e?-1) 1

but

2 2
A B _ e 0 B A _ e 0
ee —(6_1 1) and e’e _(e(e—l) 1).

Definition 2.5.1 (Graph diffusion). From the graph Laplacian, we can define the graph
diffusion operator

(L(r’s))n u.

n

— (=1)"t"
ot L0 Z ( )'
n=0 ’

Then o(t) := e£""u is the unique solution to the diffusion equation

dv
—_— (rls) =
T LV %(t), v(0) = u.

Exercise 5. Prove this.

2.5.1 The random walk on a graph

Definition 2.5.2 (Random walk). A random walk is a process by which a particle (a
“random walker”) moves through some set of locations by randomly jumping from location
to location according to some rule.

There is a natural random walk on a weighted graph, defined by the rule: if the
walker is at vertex i at step 1, then it jumps to vertex j at step n + 1 with probability
wij/d;. The stationary distribution 7 of a random walk on V is defined such that: 7; > 0

foralli eV,

Z =1,

ieV
and if for all i € V there are k random walkers with km; walkers on vertex i at step n,
then foralli € V:

E[# of walkers at vertex i at step n + 1] = km;.
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Proposition 2.5.2. For the above defined random walk,
d
Z jev d]' '

Proof. 1t is easy to see that ; > 0 and that }}; m; = 1. Let W;, denote the number of
walkers at vertex i at step n and let W; ,, = kd; /3’ j dj. Then

T =

a)]',-
E[I/Vvi,n+l] = Z Wj,n d_
jev. ~—— /

walkers at j M

P(a walker at j jumps to 7)

B Z ZéEV dl’_]‘

jev
jev ZleV d(’
kd;
= =kmn
Zfev dy l

2.5.2 The random walk perspective on graph diffusion

Foru € V withu; > 0foralli € V,and (r,s) = (1,0), there is a particularly neat random
walk perspective on graph diffusion. Suppose that at time ¢t = 0 and at each vertexi € V,
we place u;d;k random walkers, where k > 1 is any natural number. At each time step
(of length 6t), each random walker either stays put with probability 1 — 6, or moves to
some vertex j € V with probability 6tw;;/d;. Let R;(t) denote the number of red walkers
at vertex i € V at time t € 6tN. Then R;(0) = u;d;k and

E[R;(t + 61)] = E[R:(1)] — StE[R;(H)] + 6tz 7 “LEIR;(1)]. 2.3)
————

jev
walkers leaving

walkers arriving
Let R;(t) := R(t)/d;k. Then by rearranging and dividing through by 6td;k:

E[R;(t + 6t)] = E[Ri(1)] _
ot

—E[R;(t)] + - Z wiBIR;(t)]

]EV
Let v;(t) := E[R;(t)]. Then v;(0) = u; foralli € V, and

vi(t + O0t) — v;(t)

- = —v(t) + Z —U](t) = —(LM9(1));.

jev
Taking 0t — 0, we recover the diffusion equation

do _

==L, 0 =u.

Note that as k — oo, R;(t) — v;(t) a.s. by the strong law of large numbers.
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2.6 Graph cuts

A major approach to thinking about graph clustering comes from the following idea: if
the weights w;; are supposed to describe the similarity of i and j, then the clusters we
seek should be very similar within themselves and very dissimilar to each other. One way
to make this quantitative is via graph cuts.

Definition 2.6.1 (Graph cuts). For S C v, the of S is defined by

Cut(S,5°%) := Z Z wij.

i€S jes¢

However, this is trivially minimised by S = @ or S = V. Even excluding such trivial
minimisers, minimising Cut encourages either S or S to be very small. Therefore, there has
been interest in various modifications to the cut functional, e.g.

Cut(S, S°)

Cut(5,59)  Cut(S, 5°)
min{|S],[S¢|}’

CheegerCut(S) := S| |S¢]

RatioCut(S) :=

We can relate these cuts to the analysis notions from the previous lecture by defining a
graph total variation.

Definition 2.6.2 (Graph total variation). Foru € V, we define the graph total variation
of u by
1 1
TVG(M) = E Z a)l-]-|(Vu)i]-| = E Z wi]-|uj - u,-|.

i,jev i,jev

Note. This total variation can also be written in a variational way akin to the continuum
definition of total variation. That is

TVg(u) = (sgn(Vu), Vu)g
=max{{p,Vu)g | p € Eand foralli,j eV, |p;j| <1}
= max{—(divp, u)yo | ¢ € Eandforalli,j eV, |p;| <1},

where the last line follows by

Theorem 2.6.1. For S C V, the total variation of the indicator function xs coincides
with the graph cutof §, i.e.

TVg(xs) = 5 Cut(s, 5°).
Furthermore, it coincides with the graph Dirichlet energy of xs, i.e.

1
TVa(xs) = 5 D @iil(xs)i = (xs))* = IVasllg = (xs, LOxs)vo.
i,jev

Proof. The relation to Cut is immediate from the definition. For the latter, observe that
[(xs)i = (xs)jl = ((xs)i — ()(5)]-)2 since xs only takes values in {0,1}. The final equality
was . o
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Theorem 2.6.2. Let B(u) := min, };cy |#i — c|. Observe that B(xs) = min{|S|, |S|¢}.

Then
TVg(u)

min
uevV B (M)
is minimised by u = xs, where

S € argmin CheegerCut(S).
Scv

Proof. Beyond the scope of this course. O



28 CHAPTER 2. A BRIEF REVIEW OF THE GRAPH THEORY THAT WE WILL NEED




Chapter 3

Some graph clustering and
classification methods

In this chapter, we will look at a graph clustering method and a graph classification
method, both of which became popular in the early 2000s (the younger reader may
therefore call these methods “classical'—the older reader may resist this suggestion).

3.1 Spectral clustering

Spectral clustering is a method with a long history, dating back to [Che69], but only
became popular as a machine learning method in the early 2000s with [SM00, NJWO01]
and especially with von Luxburg’s ‘tutorial’ [VLO7]. The idea of spectral clustering is to
use the graph Laplacian to perform a non-linear dimensionality reduction, in order to
cluster data which may have complicated geometric patterns.

LetV = {1, ..., N} and suppose we have data points x : V — R?, where d may be very
large. The goal of a clustering algorithm is then to sort these N feature vectors into, say,
K clusters. Often, it turns out that the data points are close to a sub-manifold with much
smaller dimension. This suggests the two-step procedure:

1. Reduce the data x to the lower-dimensional data IF(x) : V — RK.
2. Cluster the F(x) (e.g., by K-means).

For a well-chosen [F, the clusters can then be found with a simple clustering algorithm
in the second step. The idea of spectral clustering is to use the low-lying eigenvectors of
the graph Laplacian on the graph built upon this data (see ) to define IF. Let
&M € V be the eigenvectors of L"*) in increasing order of eigenvalue, and define

T
F(x): i — (551),...,5510) e RK.

In order to develop an intuition why this is a useful choice, consider the case of K perfect
clusters. That is, the graph built on the data has K disconnected components. Then, by
, &0 = ps Xs, where the S, C V are the clusters, and hence each (IF(x));
lies on the axis corresponding to the cluster which i belongs to. Then the F(x) are very
easy to cluster.
For real data sets, we generally do not have perfectly disconnected components of
course. However, if the data is clustered in roughly K groups, we would expect that the
first K eigenvalues are close to zero with a spectral gap between A(K) and A&+, with the

29
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eigenvectors still approximately indicating the location of the clusters. This is visualised
in and 2.5, of which the latter somewhat dramatically shows the impact of
normalisation.

The immense success of spectral clustering lies in its flexibility to deal with data
of various shapes and complicated geometries. Despite its enormous popularity and
success, our theoretical understanding of the performance of spectral clustering is still
rather vague. While there is vast empirical evidence of clustering examples in which
e.g. spectral clustering by far outperforms k-means, there exists little rigorous theoretical
analysis—even for very simple cases—that would prove the superiority of spectral clus-
tering, partly due to the two-step procedure which complicates its theoretical analysis.
For recent work, see [GTHH21, GBT21, HHOS22].

3.2 Laplace learning

Laplace learning, introduced in [ZGL03], is a method which uses the graph Laplacian £
to propagate some a priori labels f : Z — {0,1} on a (typically, very small) subset Z of
V. Extend f to a function on V taking the value 0 on V' \ Z. The fundamental idea is to
solve the following minimisation problem:

2
. 1 up U
arg min Eu) == wii | —= - = s.t. ulz = f. (3.1)
uev 4 l;/ ! (‘ﬁ ds)

That is, we want to encourage similar vertices (i.e., those with a high w;; on the edge
between them) to be given the same label by u, but also enforce that u agrees with our a
priori labels f.

Theorem 3.2.1. u € V solves if and only if

LUy =0, onV\?Z,

u=f, onZ. (3-2)

Proof. First, recall from that

1
E0) = 30, Ly
Then for ulz = f

u solves iff Vos.t. v|z = f,E(u) < E(v)
iffVost vlz=f,0<(v—-u, LUy + V)Y r—s
iff Vos.t olz=f,0< =1, LU0 = u))y s + 20 —u, L7 u)y

Hence if L") u =0on V \ Z then u solves CIE(LUSu); # 0 for some i € V' \ Z then
letv = u +tx(;. It follows that v|z = f and

(=1, L 0-w)yy s +2@—1t, L7y -5 = 2y, L0 x iy rms+2bd (LT u); < 0

for sufficiently small ¢ of opposite sign to (£"*)u);, and hence u does not solve . O

One way of looking at is that the desired u is a harmonic extension of the labels f.
Finally, given u solving , we threshold u to assign labels to all of V.
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3.2.1 Random walk formulation
Let i € V and consider the random walk (already introduced in ):
X, Xi, X, ...
defined by Xé =iand
P(X,, = jIXi = k) = (‘;—i" = Py;.
Note that P = T — £L10). Let
7; == inf{n > 0|X}, € Z},
this is called the hitting time of Z from i.

Theorem 3.2.2. Lets = 0 and let u solve . Thenforalli € V
u = E[fX%,]
Proof (sketch). This is a consequence of Doob’s optional stopping theorem. ]

That is, Laplace learning can be understood as putting a bunch of random walkers
on a vertex i, letting those walkers walk until they hit a labelled vertex, and then giving
i the label those walkers hit most frequently.

3.3 Poisson learning

Unfortunately, for Z very small relative to V, Laplace learning degenerates, giving u ~ c
for some constant ¢ on almost all of the vertices in V' \ Z. This phenomenon is explained
by the following exercise.

Exercise 6. Show that for Z sufficiently small, the mixing time for the random walk is
smaller than the hitting time of Z from i, for most i € V \ Z. Show that therefore
c={f, xz)v1/{xz, Xxz)v .

In [CCTS20], a new method was proposed to avoid this issue, called Poisson learning.
We modify this method slightly to fit it into our more general framework. Define

fos o DXz v
<XZ/ DSXZ>(V,7—S !

the “average label”. Note that f*) = f"9). Then consider the Poisson equation:

L= f =z, (1, D*1)y—5 = 0. (33)
Theorem 3.3.1. Let G be a connected graph. Then there exists a unique solution to

Proof. Note that (f — f"*) xz, D*1)q ,_s = 0, and that, by connectedness, D*1 is the only

eigenvector of £"*) with a zero eigenvalue. Hence
N 3
u' = _<f_f(r’S)XZ/ ‘S(k)>(V,r—sé(k)
- AK)

solves LU*)y* = f — f9) x5 Finally, if LU5u = f — f9) x 7 then L") (u — u*) = 0 and
hence u — u* o« D1, so if (u, D°1) ,—s = 0 then u = u™. O

2
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Theorem 3.3.2. Let G be a connected graph. Then u solves if and only if u
solves

arg min Ew)—(u, f - f(r’s)xz)q/,,_s s.t. (u, D°1)q ,—s = 0. (3.4)
ueV

Proof. By , U minimises if and only if # minimises

(u, L7 =2(f = F" x 215,

if and only if # minimises

(=1, L0 = "))y s,

if and only if u = u*, since G is connected and {(u, D’1)q ,_s = 0 = (u*, D°1) ,_;, where
u” is the unique solution to defined in the previous theorem. o

In [CCTS20], it was shown that this method is much more effective than Laplace
learning when there are very few labels Z.

3.3.1 Random walk formulation

We can derive Poisson learning from a random walk formulation in the (r,s) = (1,0)
case. Instead of having walkers walk until they hit a label, as in Laplace learning, instead
we have walkers begin at the labelled nodes. Define

T

(wr)i =y > d; FP(X) =),

=0 jeZ

What this keeps track of is as follows: imagine that we have walkers who begin at each
labelled node j € Z, and carry with them a contribution d; f;, which they confer to each
vertex they encounter. Then (wr); records the expected total contribution conferred to
vertex i after T steps of the walk.

Ast — oo,

i . d,’
P(XZ =i)— S dr =7

and hence for large ¢,

1 . d,‘ d,‘ = = j .
Z difiP(X] = i) ~ 2k dk deff T Trdk def(m) ~ Zdjf(l'o)P(Xg = i).
j€eZ

j€ezZ jez jez

This long-time behaviour is undesirable, as it corresponds to when our starting location
has been “forgotten’ by the random walk. We therefore subtract it off, and define

T .
= 3 S it~ 7R =
t=0

j€Z

Theorem 3.3.3. Forall T > 0,

(ur+1)i = (ur); = (LYOur); + f = FA0x,

If the graph is connected and every eigenvalue of P (except for the 1 eigenvalue
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corresponding to P1 = 1) lies in (-1, 1), then ur — u as T — oo where u solves
with (r,s) = (1, 0).

Proof. Let
1o
- ] —
(Gr)ij = B t:EO P(X; =1).

Then

T-1

di (GT)1] = 61] + ZP(XHl )
t=0

=0j + Z Z P(X] (by the definition of the random walk)
t=0 keV

=0j + Z ik (Gr-1)kj-
keV

That is, recalling that L0 =1 D 1lw,

Gr = D_l(I +wGr-_1) = D1+ Gr-1 — L(l’O)GT_L

Then
Uryl = GT+1D(f _f(l'O)XZ)
=D'D(f = f9x2) + GrD(f - f10xz) = LIOGrD(f - F10x7)
=ur — L3Our + f - F10,,
as desired.

Now, let u € V be the unique solution to
L0y = f _JF(LO)XZ
with (u,1)q1 = 0. Then defining dur := ur — u we get that
OUury1 =uUr —u — L(l'o)ur +v = dur — L(l’o)éuT = Pdur.
Hence, by the assumption on the eigenvalues of P, as T — oo,

Sur — (6ug, 1)y 1 1= (uo, )y 1 1=0,
<1/ 1>(V,1 <1/ 1>(V,1

since

(o, Dy = 3 > dilfi = OB = i) = ) di(fi = ) =0

i€V jezZ j€Z

Hence ur — u with u solving , as desired. m]
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Chapter 4

The Allen-Cahn equation and
MBO scheme on graphs

4.1 Allen—-Cahn and MBO
41.1 Ginzburg-Landau and Total Variation functionals

Definition 4.1.1 (Graph Ginzburg-Landau functional). Letu € V,andlet W : R — R
be a continuous double well potential with wells at 0 and 1. That is, W(x) > 0 for all
x € Rand W(0) = W(1) = 0. Then the graph Ginzburg-Landau functional is defined
(for parameter € > 0) by:

1 1
GLe(u) = 5 IVully + = ) W),
ieV

This can be related to the graph cut (i.e., total variation) via a special type of conver-
gence. For a given subset of vertices S C V, define the indicator function ys : V — {0, 1}

on S by
(i) = 1, ifies,
W=, ifigs.
Then we relate GL, to TVg.

Theorem 4.1.1 (See [vGB18, Theorem 3.1]). Define the following functional on V:

%TVG()(S), ifu = ys forsomeS CV,

TVQ(M) = {

00, otherwise.

Then as ¢ — 0, GL, I'-converges to TV.

Note. For a definition of I'-convergence, see [Bra07, Definitions 1.5 and 1.45]. For our
purposes, all that matters here is that this result means that minimisers of GL, converge
to minimisers of TV, and the latter are what we thought of as good clusterings.

4.1.2 Graph Ginzburg-Landau and Allen—-Cahn

As we just saw, the graph Ginzburg-Landau functional is a relaxation of the graph cut,
and is therefore a natural energy for binary clustering.

35
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In the finale of this course, our focus will be on binary classification, where we have an
additional a priori segmentation f : Z — {0, 1}. We will therefore generalise this energy
to include fidelity forcing to f, and also introduce some further pieces to incorporate
different Laplacians.

Definition 4.1.2 (Graph Ginzburg-Landau functional with fidelity). The graph
Ginzburg-Landau functional with fidelity is given by:

r 1 - 1 1
GLL () := S IV w)llg + — (W o, Dy, + 5 (= f, Mt = )y,

where M := diag(u) for u € Vo o) the fidelity parameter with Z = supp(u).

Note that p; paramaterises the strength of the fidelity to the reference at vertex i. We
have here extended f to be zero on V \ Z. We will suppress parameters when they are
clear from context.

Theorem 4.1.2. This Ginzburg-Landau functional has the following first variation:
s _ gL (rs)y + L _
GLE/#,f(u +0u) = GLs,y,f(”) + <£ u+ gW ou+M(u-f), 6u>(V ~ +0(6u)

Proof. We first recall an important lemma (shown in Lecture 2, Exercise 1):

Vol = (v, LOVv)q .
Given this lemma, it follows that
V(D= u)l1Z = (D~*u, LOODu)qy o
= (u, D LoD u)y 9
={u, D_(Y_S)D_SL(O'O)D_Su)q/,r—s

= (u, L7 u)y .

Finally, we verify each part of the first variation separately:

1 1
S+ 01, L7+ 5y, s = 2 G, L)y s

+ (6u,£("5)u>q/,r_s + o0(ou),
Wou+0ou),)y,.s=Wou+dud(W ou)+o(du), 1)y ,—s
= (W ou, 1>(V,st + <6u/ W/ ° u>(V,VfS + 0(61/!),

%(u +0u—f,Mu+ou—fy,—s = %(u —f, M@= )y,
+ (Ou, M(u — f))v,r—s + 0(0u).

For the first and third expression, we used that £7*) and M are self-adjoint with respect
to (:, -) r—s. For the second expression, we used the definition of the derivative. Note
that © denotes the Hadamard (i.e., componentwise) product. ]

Given these first variations, we can define the Allen—Cahn gradient flow of the Ginzburg—
Landau functional.
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Definition 4.1.3 (Graph Allen-Cahn equation with fidelity). The graph Allen-Cahn
equation with fidelity is defined to be the ODE:

du 1

2 _ sy, 2w - -

= L= W o u - M(u - f). 4.1)
By , this is the gradient flow of GL(Er;f)f with respect to (-, )y r—s.

4.1.3 The Merriman-Bence-Osher (MBO) scheme

In we defined graph diffusion. To define the graph MBO scheme, we will first
define graph diffusion with an extra fidelity forcing.

Definition 4.1.4 (Fidelity-forced graph diffusion). The fidelity-forced graph diffu-
sionof ug € V' is

[ji_l:(t) =—-Lu(t)-Mu@)-f), u(0) = up. (4.2)

Fort,x € R, let Fy(x) := (1 — e7¥)/x, and extend F; to (real) matrix inputs via its Taylor
series. Then, for any given uy € V, has a unique solution, given by the map:

u(t) = Srug := et LMYy Fi(L+M)MSf.
Exercise 7. Prove that this is the unique solution to

Then the graph MBO scheme (with fidelity forcing) is defined as follows.

Definition 4.1.5 (Graph MBO scheme (with fidelity forcing)). The graph MBO
scheme defines a sequence u, € Vi 1y from initial condition ug € Vig 1) by the following
diffusion-thresholding scheme with time step © > 0:

- 1, if(STun)i >1/2,
(Un+1)i = {0, if (Setty)i < 1/2. (4.3)

That is, 1.1 is defined by evolving the forced diffusion of u,, for time T, and then thresholding.

4.2 The SDIE scheme

4.2.1 The SDIE scheme and its variational form

Definition 4.2.1 (SDIE scheme for the Allen-Cahn equation). We define the following
numerical scheme for , which we call a semi-discrete implicit Euler (SDIE) scheme:
for time step T > 0

T 7
Ups1 = Scuty — EW O Upil. 4.4)

What this is doing is diffusing u,, for time 7 using the solution operator for fidelity-forced
diffusion, and then taking an implicit Euler step against the potential.



38 CHAPTER 4. THE ALLEN-CAHN EQUATION AND MBO SCHEME ON GRAPHS

4.2.2 Convexity recall

Definition 4.2.2 (Convex function). A function f on an interval T C R is said to be
convex if forall x,y € Tand t € [0,1]

fltx+ (1 =Dy) <tf(x)+ 1 =-Df(y).

Geometrically, it always lies beneath its secant lines.

Theorem 4.2.1. Let f : R — R be differentiable and convex. Then x is a global
minimum of f (i.e., f(x) < f(y) for all y € R) if and only if f’(x) = 0.

Proof. Suppose that x is a global minimum of f. Then for & > 0

et - f)
LU

and for h <0 L

S f)
so f’(x) = 0. Now suppose that there exists f(y) < f(x), and let « = f(x) — f(y) > 0.
Then forall ¢t € [0,1]

flx+(1-ty) <tf(x)+(1-)f(y)=fx)-(1-Ha
Lettx+(1-t)y=x+h,ie. h=(1-t)(y—x). Ify >x, h >0and
fam)-f0) _ (1-ba o

n T a-ny-v  y-x

Ify <x,h <0and
far-f@) o _ a
h Toy-x ly-x|

In either case, taking t — 1 and therefore I — 0, we get |f'(x)| = a/|y — x|, and so
f'(x) #0. m]

4.2.3 The variational form of the SDIE scheme

Theorem 4.2.2 (Variational form of SDIE scheme). Let W be differentiable, r’ € R,
and let 7, € be such that y — %W(y) + %y2 is a convex function. Then u,,,+1 solves

if and only if
1
lns1 € argmin —(W o 11, 1)y + 5l = Seualy . (4.5)
ueV
Proof. 1,41 solves if and only if foralli € V,

(4y+1)i € argmin EW(x) + 1(x — (Seun)i)*
xeR € 2

Since the objective function is differentiable and convex, this holds if and only if
T o .
EW ((n41)i) + (Uns1)i — (Scup)i =0 forallieV

by the previous theorem. This is precisely . O
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4.2.4 The variational form of the MBO scheme

Theorem 4.2.3. For all ¥’ € R, u,41 given by solves
Upe1 € argmin (1 — 281, u)y (4.6)
Méq/[oll]

which is equivalent to

o1 1
Ups1 € argmin —(1—u, u)y » + 3 [|lu — STunllgV,r, . 4.7)
ueV
011
Proof. 1,41 solves if and only if foralli € V,

{0}, (Scun)i < %/
(tn41); € argmin (1= 2(Seun)i)x = 1[0,1],  (Seun)i = 3,
x€[0,1] {1}/ (S’Iun)i S %/

which is satisfied by u,,+1 given by
Next, we rewrite the objective functional in

1 1
S =)y + 5 Ju = Sl
1 1 1 1
= §<1/ U)y, = §<M/ U)y, + §<M/ w)ey,pr = (U, Setby )y, + 7 ||Stun||gv,r/

1 1
= 5{1=28cuy, )y, + 5 S z1tnll

which as the same minimisers in u as (1 — 28;u;,, ) . ]
We notice that and are almost identical. To make them exactly identical, we
desire:

1. W to equal %x(l —x)on [0,1].
2. W to force the minimisers to lie in Vg q].
3. Tequaltoe.

4.3 Thedouble-obstacle potential, subdifferentiability, and
weak differentiability

We can satisfy all of our desiderata by making the folowing definition.

Definition 4.3.1 (Double-obstacle potential). The double-obstacle potential W : R —
[0, oo] is defined by

%x(l -x), x€][0,1],

00, otherwise.

W(x) = {

See e.g. [BE91,BKS18, OP88] for discussion of this potential.

There is just a little problem: in the above definition of the Allen—Cahn flow and SDIE
scheme, we used the derivative of W. Which this W doesn’t have at 0 and 1.

Question. How can you differentiate a function that doesn’t have a derivative?
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4.3.1 Subdifferentiability

Definition 4.3.2 (Subdifferential, see [ET99, Definition 5.1]). Let f : T — [0, c0] be a
convex function, where T C R an interval. Then ¢ € R is a subderivative of f at x € T if

fy) = fx) 2 ey —x)

forall y € T. Geometrically, ¢ is the slope of a line which coincides with f at x and
always lies below the graph of f. The set of such subderivatives, denoted df (x), is called the
subdifferential of f at x.

Example 4.3.1. Let f(x) = |x|. Letx > 0, and we desire |y|—x > c(y —x). Taking y = x+1
we get 1 > ¢. Taking y = x/2 we get —x/2 > —cx/2 and so ¢ > 1. Finally, ¢ = 1 works
because |y| > y for all y. Thus df(x) = {1} for x > 0. Likewise, df(x) = {-1} for x < 0.
Finally, for x = 0 we get |y| > cy, which is true whenever ¢ € [-1,1].

Theorem 4.3.1. Let f : R — [0, co] be a convex function.

1. If f is differentiable at x, then df (x) = {f’(x)}.
2. Ifcy,cp € df(x)and c1 < ¢ < ¢, then ¢ € df(x).
Exercise 8. Prove this.
Write
Wi(x) = %x(l = x) + Ijo)(x)

where I 1] is the indicator function taking value 0 on [0, 1] and oo elsewhere. Then

1
“OW(x)" = 5~ x + 9l 1)(x)

where I have been a little loose with my definitions here, as W is not convex, but the
above expression for W separates it into a convex function plus a differentiable function.

Proposition 4.3.2. Ijo 1] is a convex function and has subdifferential:

2, x <0,

(—00,0], x=0,
81[0,1](.‘)() = {0}, O<x<l1,

[0,00), x=1,

2, x> 1.

Proof. We wish to show that forall x,y e Rand ¢ € [0, 1]

1[0,1](tx +(1- t)y) < tI[O,l](x) +(1- t)I[o,l](]/).
If either of x, y ¢ [0, 1], then the RHS is infinite so this is satisfied. If x, y € [0, 1] then
tx + (1 —t)y € [0,1] and so LHS = RHS = 0. 9ljp1)(x) = {0} for x € (0,1) follows
by the first part of the above theorem, and dljp1j(x) = @ for x ¢ [0, 1] follows since
Io,11(y) — Ijp,11(x) is either —co or co — 0, so is never > c(y — x) for any ¢ € R. We will
check x = 0 (the case x = 1 goes the same way). We seek ¢ € R such that

vy €[0,1],

0,
cy < Iy = {oo y 2 [01]

Taking y = 1 we get that ¢ < 0, which is also plainly sufficient. ]
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4.3.2 Weak differentiability and the H'! space

Definition 4.3.3. Leta <b € Rand f : (a,b) = R. Then df /dt : (a,b) — R is a weak
derivative of f if it satisfies

d b
e == [ 050

a

for all infinitely differentiable ¢ : (a,b) — R which are zero outside of some closed interval
contained in (a,b). Let u € Vie(ap). Then du/dt € Vie(, p) is a weak derivative of u if for
alli € V, (du/dt); is a weak derivative of u;. We define the Sobolev space

HY((a,b); V) := {u € L*((a, b); V)|du/dt € L*((a, b); V)}

and the local Sobolev space, for T C R an interval,

Hl

loc

(T;V):={u el (T;V)Va <b €T, ulup € H'((a,b);V)}.

loc

Sobolev spaces have a lot of theory attached to them, which I will do my best to skirt
around. See [Bre83] for details.

4.4 Double-obstacle Allen—Cahn flow

Definition 4.4.1. Let u € V. We define the set.
Bu):={aecV|VieV,a; € -dlyyu} (4.8)
which is non-empty if and only if u € Vi 1). Then p € B(u) if and only if forall i € V

[0/ OO), u = 0/
Bi € {0}, O<u; <1,
(—OO, O]/ u; = 1.

| Lemma4.4.1. Letu € Vjo,1) and B € B(u). Then for all n € Vo 1), (B, —u)y = 0.

Proof. Consider Bi(n; — u;). If u; € (0,1) then B; = 0, so this term equals 0. If u; = 0
then ; > 0 and n; — u; = 1; > 0, so the term is non-negative. If u; = 1 then §; < 0 and
ni —u; =1; —1 <0, so the term is non-negative. Hence foralli € V, fi(n; —u;) 2 0. O

Definition 4.4.2 (Double-obstacle AC flow with fidelity forcing). Let T be an interval.
Then a pair (u,B) € C(T; Vio,1]) X Vier is a solution to double-obstacle AC flow with
fidelity forcing on T if u € H! (T;V) and for almost every (a.e.) t € T:

loc
du 1
eﬁ(t) +eLu(t) + eM(u(t) - f) + 51 —u(t)=p(t),  P(t) € Bu(t)). (4.9)
Note. Whenever I say "a.e.", feel free to ignore it if you are unfamiliar with measure

theory and replace it with "every". It does not play a big role in understanding the
results.
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Theorem 4.4.2. If (1, f) obeys Definition ,thenforallie Vandae. t €T,

I+ e(Lut))i — epifs, if u;j(t) =0,
Bi(t) = {0, if ui(t) € (0,1), (4.10)
L e(LUDut))i + epi(1 - i), ifui(t) = 1.

Let

— : -r (A=S _ A4S
Q = mind; ;wu(di ;) <0.
J

Then forae. t €T,

B(t) € Vic1/24¢0,1/2)-

4.4.1 An integral form for double-obstacle Allen-Cahn

Theorem 4.4.3 (Explicit integral forms). Let (u, ) € Vjo1]ter X Vier, and recall that
Ftis (1 — e7™*)/x extended to matrix input via its Taylor series.
Then (u, B) satisfies Definition if and only if the following hold:

* fislocally integrable,
e forae. teT, ‘B(t) S B(H(t)) and ﬁ(t) S (v[_1/2+€Q,1/2], and
e forallt € T (for B:= L+ M —¢&7):

u(t) = e7Bu(0) + F4(B) (M f- %1) + % /O t e~t=9)Bg(s) ds. (4.11)

Where Q is as in the previous theorem.

Proof. Let (1, B) obey Definition . Note that we can rewrite both in the form:
du
gﬁ(t) + eBu(t) —v = (t) (4.12)

where v = ¢eMf — 41. Then f is a sum of a continuous function and the derivative of
a C! function and hence is locally integrable. The pointwise bounds on f follow from
Theorem . Finally can be further rewritten:

e% (efBu(t)) = e'B(B(t) + v).

Hence, by the fundamental theorem of calculus on H 1 [Bre83, Theorem 8.2], if u €
C%T;Vjo.1)) N HY(T; V) solves ,then forallt € T

t t t
eBu(t) — u(0) = 1 (/ e*Bu ds +/ esBB(s) ds) = 1etBFt(B)U + l/ esBB(s) ds
(where we have used that /Ot e*B ds = e'BF;(B), which is simple to verify) and so

u(t) = e Bu(0) + %Ft(B)v + %e‘tB ‘/Ot esBB(s) ds. (4.13)

Thus if u solves then u solves
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Now, let (u,) € Vioter X Vier satisfy, at a.e. t € T, p(t) € B(u(t)), and p(t) €
Vi—1/2+¢0,1/2] is locally integrable, and let at all t € T u(t) be given by . Then,
differentiating ,att € T u has formal weak derivative

t
1) = ~BetPu(0) + oo + () - B / e =Pp(s) ds
0

which can be checked to satisfy . Furthermore u € C%(T;Vjo 1)) N HY(T; V), but we
omit the details. O

4.4.2 Uniqueness

Theorem 4.4.4. Let T = [0,Tp] or [0,c0) and let (u,p) and (v, y) satisfy u,v €
H}OC(T;(V) N CO(T,'(V[OJ]) and u(0) = v(0). If (u,B) and (v,y) solve , then
u(t)=v(t)forallt € T and B(t) = y(t) atae. t €T.

4.5 The SDIE scheme for double-obstacle Allen-Cahn, and
the link to the MBO scheme

4.5.1 Defining the double-obstacle SDIE scheme

As with the Allen—Cahn flow, we have to introduce subdifferential terms.

Definition 4.5.1 (Double-obstacle SDIE scheme with fidelity forcing). Forug € Vo),
n € N we define the SDIE scheme for the double-obstacle Allen—Cahn flow as the iterative
scheme:

T T T
(1= 2) tss = Settn + 51 = ZBua (4.14)
€ 2¢ £

for Bn+1 € B(uu+1). For the rest of this chapter we will define A .= t/¢

4.5.2 The variational form and link to the MBO scheme

Theorem 4.5.1. Let A € [0, 1]. If (1441, Bn+1) soOlves with Bn41 € B(up+1), then,
forall v’ € R, u,41 solves:
Upy1 € argmin A(u, 1 —u)qy » + || — S;uy, ||3V - (4.15)
ueq/[o,l] !
For A € [0,1), has unique solution
0, if (Sruy); < %/\,
()i = 4 L S 6 1) < (S, < 1- 14, (4.16a)
1, if (Seun); 21— 134,
with corresponding f,4+1 = A1 ((1 - Muys1 — Seuy + %1) For A =1, has

solutions
{1t (Soun)i > 1/2,
(up+1)i € 410,1],  (Scun)i =1/2, (4.16b)
{0}/ (STun)i < 1/21
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with corresponding 41 = %1 - S;uy.

Hence if 1,1 solves then there exists 41 € B(un+1) such that (11,41, fr+1)
solves . Note that this is the MBO threasholding.
Proof. Let (1441, Bn+1) solve , 80 Br+1 € B(uus1). Let z := Sru,. We seek to show

thatfor0 <A <1
Atps1, 1= ups1)y + Un1 — 2, Uns1 — Z)qp S AN, T=)y + (N —2,1=2)y,

for all n € Vo). By rearranging and cancelling this is equivalent to

0<(n—ups1,A1~- ZZ),V + (1 =), mv = (tns1, Uns1)v)
=M —tn41, AL =22+ (1 = A)(0 + tins1))qy
= (N = tns1,2ABns1 + (1 = A)(N = Uns1))q,
=2A(n — U4, ﬁn+1>rv +(1=Mln- un+1l|ﬁ/

where the second equality follows directly from . Finally, we have by Lemma
that this inequality holds for all 1 € Vg 1.
Next, let u solve . The functional in can be rewritten as

A, 1=ty o+ |l = SeunllFy o = > 7 gin (i)

i€V
where
Qin(x) = Ax(1 = x) + (x = (Seutn);)*
so we can reduce to the system of 1-dimensional problems

(Un+1)i € argmin g n(x).
x€[0,1]

Differentiating, we get that for 0 < A < 1, g; , is minimised at

_ (Srun); = A[2 _ 1 + (Stun); —1/2
B 1-A ) 1-A

Therefore for 0 < A < 1 the solution u is given by

if (Seup); < 1A
if A < (e7™uy), <1-3A
if (Seun); >1-3A

~

i (Szup);-1/2

Ui = e —

— e O

~

and hence

A= M = Seun)i + 5

% _A_l(S’Tun)f/ lf (Srun)i < %/\/
=40, if 1A < (Squn); <1- 134,
3+ AT A = (Seun)i),  if (Seun); = 1- 24
% - A_l(STun)ir if up = Or
= 0, if u; € (0, 1),
—% + A1 (1 = (Seuy)i), ifu; =1.
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Thus, noting that the top case has a non-negative value and the bottom case always has
a non-positive value, we observe that  := 47! (1 = A)u — S;u, + 41) € B(u), so (u, )
solves

If A =1 then examine the functional in for A =1:

(4,1 = )y + |l — Sett ||,
= (url - u)ﬂ/ + <1/l _S’L’un/u _STqu>(V

=(u, )y — (u, u)y +(u, u)y —2(u, Scity)qy + (Scttn, Sctn )y
= (u,1-28un)q,

and therefore u as a minimiser must obey

{1t (Soun)i > 1/2,
u € [0/ 1]/ (Srun)l' = 1/2/
{0}, (Scun)i < 1/2.

Hence g € B(u) if and only if for each i € V

[0/ OO), (S’[un)i < 1/2
Bi € {0}, (Scun)i =1/2,u; € (0,1)
(=00,0], (Stup)i 21/2

and thus %1 — Suy, € B(u), so (u, B) solves . O

We note a useful consequence of this result.

Theorem 4.5.2. For A € [0,1)" and all n € N, if u,, and v,, are SDIE sequences defined
according to with initial states ug, vo € Vjo 1) and &1 is the smallest
eigenvalue of £ + M, then

[l = vnlly < €171 = )" [lug — volly- (4.17)

“For the MBO case A = 1 the thresholding is discontinuous so we do not get an analogous property.

Exercise 9. Prove this.

4.5.3 Freezing

If 7 is taken too small, the SDIE scheme “freezes”. Fix S C V and & > 0. Then there exists
7* (depending on S, @, £, M, and f) such that |(S:xs)i — (xs)il < a foralli € V and

7 < 7" Thenif a = % it follows that the only valid MBO update of u,, = xs is ty41 = Xs

for t < 7. And if @ = £ < 3 it follows that the only valid SDIE update of u, = xs is

Uy+1 = Xs for T < 7*. Note that in this latter case 7* has a lower value.

4.6 The 7 | 0limit of the double-obstacle SDIE scheme
To simplify notation we write in the form
(1 =My - e_TAun —w = ABp+1 (4.18)

where A :=1/¢, A:= L+ M,and w := —%)\1 + F(A)MS.
We now solve the SDIE recurrence relation for the n'" term.
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1 .
T 05
S
0 f . . !
0 T/2¢ 0.5 1-1/2¢ 1

(Scun);

Figure 4.1: Plot of the piecewise linear thresholding of S;u, described by

Proposition 4.6.1. For A € [0, 1) the sequence generated by is given by:

n
Uy =(1=A)"e " Ay + Z(l — A)ke~k=Drdy,
k=1

} (4.19)

A
_ 1\—(n—k) ,—(n—k)tA
i ;(1 A)~(r=Re Br

Proof. An unexciting proof by induction.

Theorem 4.6.2. Lett >0,¢>0,B:= A—¢7!1,and v := eMf - %1. Then with
respect to the limitof 7 | 0 and n — co with nt —t € [0, 7):

1. (1=A)"e Ay = e tBuy + O(7).
2. Yi_ (1= )y ke~ (k-Drdy = 1F (B)o + O(x).
3. &y i (1= A)y"Re—n=hag, = A 3 e==RBg 4+ O(7).

Hence by , the SDIE term obeys

n
uy = e Bug + %Ft(B)v +A Z e~ =g, 1 O(1). (4.20)
k=1

Note. The key idea will be to rewrite the sum in

as an integral, and connect to the
integral form of double obstacle Allen-Cahn.
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Definition 4.6.1. Define the piecewise constant function z. : [0, c0) — V

ZT(S) = eTBﬁgTJ’ O<s=<=t
ek’l’Bﬁ’[:], (k—=1)t <s <ktforkeN

and the function

e(T—S)B‘BET]’ 0 S S S T

s)i=e Bz (s) =
V(s) «(s) {e(kT—S)BﬁE(T]/ (k=1)t<s<ktforkeN

using the bookkeeping notation of the superscript 1] to keep track of the time-step governing
uy and B,.

Theorem 4.6.3. For any sequence T,(P) 1 0 with Tflo) < ¢ for all n, there exists a

function z : [0, c0) — V and a subsequence 1, such that

/Otzm(s) ds — /Otz<s> ds.

(B) The Cesaro sums converge pointwise: there exists Ny — oo such that for
almost every t > 0

(A) Forallt >0,

1 N 1 Ny
N ; 2o, (1) > z(t) and N 21 e (£) = y(t)

as k — oo, where y(t) := e~ 'Bz(t).
Proof. Omitted. m]

We thus infer convergence of the SDIE iterates.

Theorem 4.6.4. Let T;O) 1l O0with 7, < e. Let 7, be the subsequence from the previous
theorem. Define forall t > 0:

i) = Lm ™! 4.21)
n—oo,m=[t/1,]
Then ,
a(t) = e Bug + %Ft(B)v + % / e~=9)By(s) ds. (4.22)
0
Note the similarity between and the explicit form for Allen-Cahn solutions

Proof. By the above discussion, we can rewrite #i(t) as:

1 Tn
AN _ —tB L A —(m—=k)t,B pltn]
at)=e uo+61—](B)v+ﬂlg‘ro1o . kz_;e By
1 1 mTy
=e By + th(B)v + z lim e’mT”B/ Zr,(s) ds.
0

- N—00
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Next, note that mt, = t,[t/7,| =: t + N, where n, € [0, 7,,). Therefore

g [ 5,5 [ 5 [
lim ¢~ "™ / Z7,(s) ds = lim e 1"e” / Zq7,(s) ds +e7Pe” / 2z, (s) ds
0 0 t

n—o0 n—oo
t t+ny
= lim e_tB/ Zq,(s) ds + e‘tB/ z,(s)ds ase P =T1+0(1,)
n—00 0 t
t
= lim e~8 / Zr,(s) ds as zr,(s) is bounded on [t, t + max n,/] uniformly in n
n—oo 0 n’
t
= e_tB/ z(s) ds by (A).
0

Finally, e *Pz(s) = e=(=9)By(s). o

Theorem 4.6.5. For any given ug € Vo), € > 0, and T,(10) 1 0, there exists a subse-

quence 1, of T,(P) with 7, < € for all n, along which the SDIE iterates (MH”], Lf"])

given by with initial state 1y converge to the double-obstacle Allen—-Cahn
solution with initial condition ug in the following sense:
e foreacht >0,asn — coand m = [t/1,], u,[,f”] — #i(t), and

Ni [Ta] N

* there is a sequence Ny — oo such that for almost every ¢ > 0, NL}{ 2insy B

y(t)

where (i1, y) is the solution to with #(0) = ug.

Proof. The only thing left to check is that (ii, y) is an Allen—Cahn solution, which we
can do by checking that all the conditions in are satisfied. We omit the
details. m|

Corollary 4.6.6. Let ug € Vjg1}, ¢ > 0, and 7, | 0 with 7, < ¢ for all n. Then for

[Ta] ~
eacht >0,asn — oo, e a(t).

Proof. Exercise, uses uniqueness of Allen—Cahn trajectories. m]

4.6.1 The well-posedness of double-obstacle Allen—-Cahn

The above theorem also proves that solutions to double-obstacle Allen—-Cahn always exist
for any initial condition, which we hadn’t proved until then.
We can also prove well-posedness.

Theorem 4.6.7. Let ug,v9 € V| 1) define Allen-Cahn trajectories u, v by
. Then, if &1 := min 6(A), then
llu(t) = o(t)llv < e 5" et #[|ug — vol|y. (4.23)

Proof. Fixt > 0 and let m := [t/7,]. By , we can take 1, | 0 such that the

SDIE sequences u?[,f”] — u(t) and v,[;"] — v(t) as n — oo. Then by

ulid — ol |, < emEm (1 = 1, 7)™ g — vol|y

and taking n — oo gives . O
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4.6.2 Double-obstacle Allen—-Cahn as a gradient flow

Theorem 4.6.8. The double-obstacle Allen—Cahn trajectory u defined by
has GL(:’: f(u(t)) monotonically decreasing in f. More precisely: for all
t>s5>0,

GL{ 7 (u(s) - GL‘”fw(t))_Z(t luts) = u (I

& f s)

Furthermore, this entails an explicit C%!/2 condition for u

lu(s) = u(®)lloy < VIt = s[\/2GL{7, (u(0)).

Proof (sketch). Represent u as the limit of SDIE sequences, and use the Lyapunov energy
for the SDIE scheme you will derive in Assignment 2. m]
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Chapter 5

Some crucial numerical linear
algebra

5.1 Why we need numerical linear algebra

In this chapter we will be thinking about how one might implement the methods from
the previous chapter, in particular the graph MBO scheme. This requires thinking about
computing

Seu = e LMy 4 Fy( L+ M)MS.

But there is a big issue: L is an N x N matrix, where N = |V|. In the end, we will
be taking V' to be the set of pixels in an image, so N can easily be in the hundreds of
thousands, millions, or even higher. For example, the image in has over 15
million pixels.

If V had 10° elements, and each entry in £ took 1 byte of memory to store, then
storing £ alone would require 10'2 bytes, i.e. 1 TB of memory! Never mind computing
the matrix exponential of L. Therefore, we will need to be cleverer if we ever want these
methods to run in a human lifetime on ordinary computers, which is where the methods
of this chapter come in.

5.2 A review of “big O notation”

A key tool for talking about the computational challenges we will need to overcome in
this chapter, and the efficiency of the methods we will be describing, is the so-called “big
O notation”.

Definition 5.2.1. Let X C R be unbounded (for our purposes X will be either R or N),
f:X—>Rand g: X — (0, 00). Then we will write

f(x) = 0(g(x))

with respect to the limit x — oo if

ol £

n—o0 xeXn(n,o0) g(x)

lim sup < 0o.

1o (%)

That is, there exists M < oo such that |f(x)| < Mg(x) for all sufficiently large x.

51
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Figure 5.1: 3487 X 4356 image obtained from https://images.unsplash.com/
photo-1679882028877-8ff92cf0abd4 (Photographer: Aaron Burden).

Note. The use of this notation in practical settings is always a little metaphorical. Tech-
nically, all O notation cares about is the behaviour in the limit, whilst in practice there
are only a finite number of inputs we will ever enter into any function before the heat
death of the universe. As such, technically these settings never overlap. The function

10100
f(x)z{«/i, x <1010,

X 10100
e, x=>10"",

is technically O(e¢") but in practice is vx, whilst the function

100

) e, x < 10107,
xX) = 10100

10 100

e® , x>10107,

is technically O(1) but in practice is e®. Moreover, the O notation can hide massive
multiplicative constants. So, the notation gives a guide for how these things grow, but it
must be handled with caution.

Proposition 5.2.1 (Some key linear algebra big Os).

1. A matrix A € RM*N requires O(MN) memory to store (is O(MN) “in space”).

2. If A € RM*N and B € RN*K, then AB requires O(MNK) operations to compute
(is O(MNK) “in time”) via the naive formula.” In particular, for A € RM*N
and v € RN a matrix-vector computation Av is O(MN) in time.

3. If A € RM*N then computing A™! and solving the linear system Ax = b are
both O(N?) in time.



https://images.unsplash.com/photo-1679882028877-8ff92cf0abd4
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“For M = N = K this can be done in O(N%8774) time by Strassen’s algorithm [S69], and there was a
major breakthrough recently in this area by DeepMind’s AlphaTensor [FBH*22].

The big advantage to using this notation is that we don’t have to worry about implemen-
tation details like how much memory a matrix entry takes up or exactly how fast our
computer adds or multiplies numbers. These all get abstracted away.

In the case of £, we therefore naively require O(N?) space and O(N?) or O(N?) time
to perform our desired computations. We will be supposing throughout this chapter
that N is much too large for anything meaningfully above O(N) in either space or time
to be practical.

5.3 Computing the matrix exponential

The key quantity which we wish to compute in order to compute graph diffusion (and
thereby compute the MBO or SDIE schemes) is the matrix exponential:

ethi= ) —A" (5.1)

or rather, the matrix-vector product e“v. For such a simple to express concept, the matrix
exponential turns out to be remarkably tricky to compute, a state of affairs perhaps no
better communicated than by the title of Moler and Van Loan’s classic paper “Nineteen
Dubious Ways to Compute the Exponential of a Matrix” [MVL78].

The discussion in this chapter will draw primarily from Moler and Van Loan’s
“Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years
Later” [MVL03] and Higham's Functions of Matrices: Theory and Computation [Hig08].

5.3.1 Why not use the Taylor series?

The definition of e/ is a Taylor series, why notjust use that? Thatis, why not approximate

M
n=0

The matrix-vector products e”v could then be computed via Horner’s method:

| —

EA

Q

A" = T (A)?

I

1
OM-1 - Av

Tt M

1
Vg = HU + Avpq1

gives vg = Tm(A)v = etv.

The first issue with this is that we would still need to come up with an efficient way
to compute matrix-vector products with A, but that is at least easier than with e4.

Another, more serious, issue with this is that the Taylor series can be slow to converge,
even in the scalar case. For example, to compute ¢! to within 1% error requires 18
terms. A worse situation occurs when one seeks to compute ¢~ via the Taylor series.
This requires 35 terms to achieve 1% error, but more importantly computing negative
exponentials is numerically unstable because it involves catastrophic cancellation.
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Catastrophic cancellation is the phenomenon where a small number is computed as
the difference of two much larger numbers. In the case of e~ 10 the largest such difference
is

10° 10"

or o
where 10°/9! = 10'°/10! ~ 2755.7. Compared to e~'0, this is massive. This causes
problems numerically because any rounding errors in the computers arithmetic will be
relative to the magnitude of the number computed. A 0.1% error in the computation
of the large numbers could produce a huge relative error in the computation of their
difference.

A matrix example from [MVL78]:

-49 24
A= (—64 31)

has true matrix exponential

-1.47 1.10

However, when computed using the Taylor series in “short” arithmetic (a rounding error
of about 0.001%) one gets instead

oA (—0.74 0.55)

-22.26 -1.43
-61.50 -3.47

requiring 59 terms to converge; this is a massive error. This occurs because A has
eigenvalues —1 and —17, so catastrophic cancellation occurs. In the case at hand, we seek
to compute e~'£ or e H£+M) where £ and £ + M are positive semi-definite, so we will
face the same challenge.

There are two strategies to mitigate this issue, but neither work well in the setting
where A is a very large matrix.

Compute e~ and invert If A has all nonpositive eigenvalues, which are going to cause
trouble, then this can be resolved by using that e = (e=*)~!, as —A will be positive
semi-definite. This seems promising since in our case A = —t L or similar. However,
computing the inverse is a big obstacle. We cannot store A or e in memory, so we can’t
directly compute the inverse matrix (and we couldn’t store it even if we could).

To compute e v by this method, we would need to solve the linear system e 4w = v
for w, with only the ability to compute matrix-vector products with e~ by the Taylor
series, which is expensive. Solving this linear system in such a setting would be very
difficult, and would require computing many matrix-vector products.

A

Scaling-and-squaring The standard way to compute matrix exponentials (used for ex-
ample in MATLAB’S expm) is the scaling-and-squaring method. This uses the fact that
e = (e4/7) s0 e can be computed via squaring e/ s times. By choosing s large
enough, one can ensure that the terms in one’s approximation' to e”/>" decay rapidly,
accelerating the convergence and avoiding catastrophic cancellation. However, since
we can't store A in memory or compute matrix-matrix products, we can’t compute the
repeated squarings. One could instead try computing e”'v = (e/°)*v by repeated multi-
plication by e#/%, but this is much more expensive and less accurate, especially when we
are computing each multiplication by evaluating the Taylor polynomial times v.

IThe expm method doesn’t use Taylor approximants, but rather the more accurate Padé approximants,
which approximate e* as a rational function rather than a polynomial. However, this difference is not essential
to understanding the method.
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5.3.2 Using the eigendecomposition

Theorem 5.3.1. ¢ is an eigenvector of A with eigenvalue A if and only if £ is an

eigenvector of e/ with eigenvalue e'!.

Proof. The forward direction is very direct:

etAEZZEAnézzmAnéze/\tg‘
n=0 n=0

The converse is left as an exercise. m]

Let &k be the eigenvectors of A, with corresponding eigenvalues Ay, and express v in

terms of them:
v = Z agly.
k

Then

ety = Z are'téy = Z are™ &g

k k

Thus if we can compute &, and A and store those pairs for which At is largest, we can
compute e*4v efficiently.

5.3.3 Using rank-reduction compute the matrix exponential

Definition 5.3.1 (Rank of a matrix). The rank of a matrix A € RM*N which we will
denote by rank(A), is the number of linearly independent rows (or, equivalently, columns)
of A. If M = N, it is also the number of non-zero eigenvalues (counting multiplicity) of A.

Recall from that we can write the graph Laplacian L in the form
UAVT where U, A,V € RNN A is the diagonal matrix of eigenvalues, and VIU =
uvt =1.

Let A € RN*N be decomposed in that form A = UAVT. Then we can approximate A by
pulling out just K eigenvalues from A and the corresponding left and right eigenvectors.

A= UKAKVE-

where Uk, Vi € RN*K Ap e REXK,

I Proposition 5.3.2. VI? Uk = Ik, where I is the K X K identity matrix.

Proof. Up to a reordering of the columns, which is the same for both U and V, we can
write U = (Ux Un-k) and V = (Vk  Vn-k). This reordering preserves that VU = I,
S0
x;guk Viun-k | _ =k 0
VN—KUK VN—KUN_K 0 In-x/|’
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It follows that
tA 1 242 1 313
el =1+tA+ t"A°+ -t°A° +---
2 6
1 1
~ I+ tUgAgVE + EtzuKAivg + gr”uKA%(v; 4o
) (5.2)

1
=1+ Ug (tAK+ Et2A§< + gt3A§<+-~ Ve

= 1+ U ("™ ~ I VT,
Exercise 10. What is the error of this approximation?

This allows us to compute
eto ~ v+ Uk ((etAK - IK) (VEZ)))

in just O(NK) operations.

Question. But how to (approximately) compute an accurate rank reduction without
computing the whole spectrum?

5.4 The Nystrom extension

The Nystrom extension, originally developed by Nystrom [Nys30] for integral eigenvalue
problems, and popularised for numerical linear algebra in [FBCMO04, WS00], is a method
for rank-reducing a square matrix A € RN*N.

5.4.1 The continuous setting

Nystrom’s original work in 1930 was to do not with matrices, but with integral operators,
and that is there that we will begin.

Definition 5.4.1. The eigenvalue problem Av = Av can be generalised in the continuous
setting to: forall y € [0, 1]

1
A= [ A 0re) dr, 63)
0
where f : [0,1] > Rand A: [0,1]*> > R.
Note. The finite dimensional case really is a special case of . For A € RN and
v e RN, let

Ay, %)= Ay ify €[ =D/N,i/N),x €[ = D/N, j/N)

and

flx) = {v,- if x € [(i = 1)/N, i/N).
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Then becomes, for y € [(i —1)/N,i/N)

N rj/N
Av; = Z/ Ay, x)f(x) dx
= JG-DIN

N pilN
= Z/ Ajjvj dx
(i-D/N

=1

1
= ﬁ(AU)i'

5.4.2 Quadrature

The key idea of the Nystrom extension is to approximate such eigenfunctions f by
employing a quadrature of the integral in
That is, let xi := k/K for k = 1 to K. Then by the definition of the integral

1 K 1
| s St

Hence for A and f solving

K
M)~ 5 Y Aly, x0f ().
k=1

Let v € RX be defined by vk := f(xi) and A € RXK by A;; := A(x;, x;). Then by setting
Y =Xk
1 ~ 1 -
N = A = —(Av)k.
Avg ~ = keve = 2 (Av)

DM~

o~
1l

1

Hence we can find v by finding the A eigenvalue of + A, and then we extend this eigenvector
to an eigenfunction on the whole of [0, 1] via

K
fy) = ALK ; A(y, X¢).

We have here essentially interpolated f from the values f(xy), and hence we call X :=
{x1, ..., xx} the interpolation set.

5.4.3 Returning to the matrix setting

We now wish to apply this same approach to approximate the eigendecomposition of
A eRN, for N large.

Recall the identification of i € {1, ..., N} with the interval [(i—1)/N, i/N) in the above
note. Then for K < N, the xj correspond to a particular subset of {1, ..., N} of size K. But
the ordering of this identification was essentially arbitrary. Hence, X can be taken to be a
random subset of {1, ..., N} of size K. Define Y = {1, ..., N} \ X.

First, write A in the form

Axx Axy
Ayx Ayy]’



58 CHAPTER 5. SOME CRUCIAL NUMERICAL LINEAR ALGEBRA

where Axx := (Aij)iEX,jeX etc.

Suppose that Axx can be eigendecomposed as Axx = UxAx U);l. Now let u§< e RKx1
be a column eigenvector of Axx with eigenvalue A;. We seek to extend u;( to a vector
u' € RN by applying a discrete analogue of a quadrature. That is, let

be defined by the following rule:
luk = Z Akﬂ/l;
jex

which can be observed to be same quadrature trick as before. Restricting to k € Y, we
obtain ' ‘
Aiuif = Ayxu;(.

Let Uy := (uy, - u{f) Then

UyAx = AyxUx
and so (assuming that A;(lx exists)

Uy = AyxUx Ay

Likewise, for a given row eigenvector vg( € R*XK of Axx with eigenvalue A;, we define
vl = (v% vi/) where /\ﬂ]; = U;(Axy. It follows that the matrix Vy with ith row vi, is
given by
Vy = A}_(l u)_(ley.

Finally, we tie this all together into an approximation for A:

u .
Ax (uX) Ax (Ut Vy)

UXAXU L UxAxVy
YAXU UyAxVy

u
(AXX Axy )
|

(5.4)

Ayx  AyxA7\Axy

Axx
AYX) x (Axx  Axy)

where in the second equality we have made use of Axx = UxAx U;(l and the above
expressions for Uy and Vy.
The key consequence of is that it reduces the task of storing A (which is O(N?) in
space) to the task of storing Axx, Axy, and Ayx, which is O(NK) in space. Furthermore,
reduces O(N?) matrix-vector products with A to O(NK) products with the smaller
matrices plus an O(K?®) matrix inversion. When K < N these are substantial savings.

5.5 Approximating the rank-reduced eigendecomposition
using the Nystrom extension

We will now consider how to extract from an approximate rank-reduced eigende-
composition of A, which can then be used to approximate e” via . You might think
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that we are done by the above. Can't we just set

u (u—l)T
- (i) -]

and have A ~ UAxVT?
Unfortunately, the “extended eigenvectors” we derived above are not orthonormal,
since

ViU = (U W) (ﬁ’f;) = Ix + Wly = Ix + AJUG AxyAyxUx A # Ik,

and hence we need a further trick.
We will for simplicity restrict in this section to the case where A is a symmetric matrix,
and hence we seek a rank K eigendecomposition

A~Uzu?
where U € RN*K ¥ € RKXK have UTU = g and & diagonal.

5.5.1 The QR factorisation

Definition 5.5.1 (Gram-Schmidt orthonormalisation). Suppose that we have K linearly
independent vectors xl, .., xK e RN, and we want to construct an orthonormal basis
q', ..., q¥ for the span of these vectors. The Gram-Schmidt algorithm for computing such
a basis works as follows.

1. To compute q" we normalise x*, i.e. g* == x'/||x!||2.
2. Suppose we have computed q', ..., q/! so far. We first create a vector orthogonal to
all of these q* by zeroing the components in each of these vectors in x/:

j-1
3=l = ) o "
k=1

3. Next, normalise g7 := §//||§7|,.

Exercise 11. Check that {q, ..., gX} is indeed orthonormal and has the same span as
{xt, ..., xK3}.

Now, let us rewrite this in matrix form. Let
A= (xl 2 ... xK)eRNxK Q:= (ql P2 qK)ERNxK
ie. Ajj = (x/); and Qij = (qf),-. Next, for i,j € {1,...,K}, define r;; := (qi,xf> fori < j,
rij:=0fori>j,and rj; := 15/]]2. Then
. '_1 . ’_l
()i = Zh_(xd, q¥)(g%); _ Aij = h_ 1k Qi
137112 jj

Qi =(q)i =
and so by rearranging

K
Ajj = Z Qikrkj = (QR)jj.
k=1



60 CHAPTER 5. SOME CRUCIAL NUMERICAL LINEAR ALGEBRA

Theorem 5.5.1 (Thin QR factorisation). Let A € RN*K have rank K, where K < N.
Then there exists Q € RN*K with orthonormal columns and R € R¥K ypper
triangular such that

A=QR.

Observe that therefore QTQ = Ix.
Note. In practice, the QR factorisation is never computed in this way, as it is numerically
unstable. See [GVL96, Chapter 5] for details.
5.5.2 The Nystrom-QR method

First, compute the thin QR factorisation
Axx
R =
o= (3%
where Q € RN*K has orthonormal columns, and R € R¥*K is upper triangular.

Note. The requirement that (féi) has full rank is entailed by the assumption that Axx

is invertible. If this does not hold, it is usually wise to resample X, or restrict to the subset
of X for which this does hold. Since Axx is small, its condition number can be cheaply
computed.

Then the Nystrém approximation for A can be written as
~ -1 pT AT
A= QRAGR Q.
Next, compute the eigendecomposition
-1 pT _ T
RAGR" = PO’

where @ € RX*K js orthogonal and £ € RX*K is diagonal. It follows that A can be
diagonalised as

A~ (QD)L(QP)T = uzu’
where U := Q® and hence UTU = ®TQTQ® = ®T[xd = Ix.
Note. This method is O(NK?) in time and O(NK) in space.

5.6 Tying this all together

Suppose we have A € RN*N a symmetric matrix. Suppose we can compute on demand
any particular A;;. Our goal in this chapter has been to devise a method to compute

et

for various t € R and v € RN, without ever using more that O(N) space or time.
The method described in this chapter is then as follows.

1. Choose K <« N, and choose X C {1, ..., N} as a random subset with |X| = K. Let
Y :={1,..., N} \ X. This step is O(N) in space and time.
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2. Compute Axx and Ayx. These are the only bits of A we will ever use. This step is
O(NK) in space and time.
3. Compute the thin QR factorisation

A
QR:(AX;).

This step is O(NK) in space and O(NK?) in time.
4. Compute the eigendecomposition

RAZLRT = ©XoT,

This step is O(K?) in space and O(K?®) in time.
5. Compute U = Q®. This step is O(NK) in space and O(NK?) in time.
6. For each t and v, compute (recall )

e ~ v+ U((e'™™ - Ix)(UTv)).
This step is O(N) in space and O(NK) in time.
Recall that this final step works because A ~ ULUT and UTU = Ix.

5.7 The singular value decomposition (SVD)

5.71 The SVD

“There are two types of people in the world: those who think the SVD is the most
useful thing since the wheel, and those who haven't learned about the SVD yet.”
—J. F. Williams, talk at TU Delft in 2019.

Lemma 5.7.1. Let r < N and U; € RN have orthonormal columns. Then there
exists U € RNXN=") such that (U Us) is orthogonal.

Proof. Let W C RN be the span of the columns of U;. Take the columns of U to be an
orthonormal basis of W+, the orthogonal complement of W. ]

Theorem 5.7.2 (Existence of the SVD). Let A € RM*N then there exist orthogonal
matrices U € RM*M and V € RV*N and a diagonal matrix & € RM*N with non-
negative entries, such that

A=UxvT.

This is called the singular value decomposition (SVD) of A. The columns of U are
called the left singular vectors, the columns of V are called the right singular vectors,
and the diagonal entries of L are called the singular values.

Proof. 1t is equivalent to show that orthogonal U, V exist such that UT AV = X. Define

[All:==  max [|Ao]l.

v€ERN ||v||2=1

This a continuous function maximised on a compact set, so the maximum is attained at
some v € RN with ||v]|, = 1. Define u € RM by u := ||A|| "' Av, so ||u|l2 = 1.
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By the above lemma, there exist Uy € RMXM-1) and V, € RNXN-1) gych that U :
(u Uz)andV := (v V) are orthogonal.
Then

T T T
UTAV = (u Av u AVz) _ (||A|| w ):: A

ujAv Ui AV, 0 B

forw € RN"Tand B € RM-DXN-D sinceu Av = [|AlluTu = ||Alland U] Av = ||A|UTu
0. We seek to show that w = 0. Consider

-

Bw
and hence ||A1]|?> > ||A]|?> + wTw. But since U,V are orthogonal, ||A1]| = ||A||. Hence
wTw =0,and sow = 0.
By induction, we have that there exist orthogonal matrices U; € RM-DX(M-1) and
Vi € RN-DX(N-1) and a diagonal matrix ©; € RM-DX(N=1 with non-negative entries,
such that UlT BV; = X1. Then

~ 1 0 ~ 1 0
U.—U(O U1) V.—V(O Vl)

2 2

> (JAIP + ww)?

2 2

are orthogonal matrices and

o~ (1 0 1 0 lIA]l 0 Al O
T _ _ _ .
vy o )[4 )0 2

completing the proof. m]
5.7.2 The best possible rank K approximation

Theorem 5.7.3 (Eckart—Young theorem [EY36], see also [GVL96, Theorem 2.5.3]).
Let A € RMXN have SVD

A=Uuxv’.
Then with respect to || - || the spectral or Frobenius norms on RM*N  the best rank K
approximation to 4, i.e.,
Ag = arg min [|X — Al

XeRMXN rank(X)<K

is given by the reduced SVD
Ax = Uk Vi

where Uk = (Ujj)i=1.m,j=1..k, Zx = (Zij)i=1..K j=1..k, and Vi = (Vjj)i=1.N j=1.K-

Proof. Left as an exercise. ]



Chapter 6

Image segmentation with the
graph MBO scheme

6.1 Turning an image into a graph

To turn an image 7 : V — R? into a graph, we must first specify the vertex set V and
edge set set E. But now you see why we have been using V to denote the domain of a
discrete image: our vertex set is precisely the set of pixels in the image. For E, for now
we shall simply take E = {(i,) € V2 | i # j}.

The important information of the image we shall encode in the edge weights w. These
edge weights are computed in two steps. First, the pixels of the image are mapped to
feature vectors z : V. — R1. The philosophy behind these feature vectors is that pixels
which are “similar” should have nearby feature vectors, where what “similar” means is
application-specific.

Example 1 (Simple example). Suppose that V = {1,...,n1} X {1, ..., n2}. One simple way
to define z is that for each pixel i =: (i1, i) € V, the feature vector z; can be defined as:

zi = (K(ir = j1,i2 = j2)L(jy, jo))-m<ir—jr i—ja<m-

That is, z; stacks together the pixel values of each pixel in the (2m + 1) X (2m + 1) square
centred at i, weighted by a kernel K.

The above example is only one way of doing things, see e.g. [BF12,CGS*17,VZ05] for
a discussion of options. A particularly important recent technique is using deep learning
to construct the features, see e.g. [MMS*22].

Given these feature vectors, we now compute the weights using some similarity func-
tion evaluated on z; and z;. Some common choices include:

¢ The Gaussian function: )
wij = e~ 4zizj)* /o

where the choice of metric d is also important, common are the Euclidean and ¢!
distances.
* The Zelnik-Manor-Perona [ZMP04] approach: Given a metric d(z;, z;), define o; :=

d(z;, zp) where z) is the M™ closet feature vector to z;. Then:
wjj = e_d(zirzj)z/aigj
This is preferred if there are many scales which we desire to segment.
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¢ Other kernels: one might also use other kernel functions, e.g.

—d(zi,zj)]o 1

or wjj = —————.
\A(zi,zj)? + c?

wij = e

¢ Cosine angle (see [HSB15]):

. _L(l_ﬂf
LAl W G TEATRTEAT I

Note that this, unlike all the others, is scale-independent.

These weights are then sometimes renormalised according to the formula:

. wij

a),'j = .
1-9/2 ;1-q/2
di q/ d] q/

6.2 Image segmentation as a graph classification task

Recall the image segmentation task: We have been given an image 7 : V — R?, and
we wish to find a u : V — L, possibly with the help of a given a priori segmentation
f:Z — L (with Z C V) such that we desire u to satisfy u|z = f.

By the above, we can encode the image x as a graph G = (V,E, w). The u we seek can
now be re-understood as a function on our graph G. The idea of this chapter is then as
follows:

* We seek a # minimising the Ginzburg-Landau energy (with fidelity) on G. This u
will by construction also serve as a segmentation of the image 7.

* We will find this u by evolving the graph MBO scheme (with fidelity forcing),
which we saw in was a numerical scheme for the Allen—Cahn gradient
flow of the Ginzburg-Landau energy.

However, there is a further question: why should the u we have derived in this way
be a good segmentation? Recall the graph Ginzburg-Landau energy (with fidelity):

T 1 - 1 1
GLY () = 5 (VD= w[E + = (W o, Dy g + 5 Gt = fL M= )y, s

The first term penalises the segmentation u if two vertices with a high edge weight are
in different segments, encouraging the segmentation to group similar vertices together.
The second term wants the segmentation to be binary. The third term penalises u for
disagreeing with the a priori segmentation, propagating those a priori labels to the rest of
the vertices.

6.3 The basic algorithm for image segmentation via the
MBO scheme
For any time step 0 < 7 < ¢ note that
Seu = e LMy 4 p (6.1)

where b := F:(L + M)Mf, which is independent of u.
A starting point for an algorithm could be the following steps.
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6.
7.

Parameters: Time step © > 0, parameter ¢ > 0, fidelity parameter u € Vg )
collected in the matrix M = diag(y), and normalisation parameters 7, s.

Input: Image 7 : V — R, training data Z, and labels f supported on Z.

Compute w from 7, and encode 7 as a graph G = (V,E,w) with E = {(i,]) €
VXVI]i#j}

Compute £ and therefore e~"£*M) and b.

From some initial condition up, compute the MBO sequence u,, by alternately
diffusing (applying S;) and thresholding.

Stop when some stopping condition is met, at 1 = #1na).

Output: u,, .

But this won’t work, because of the size of the matrices.

6.4

Computing graph diffusion

Recall that to compute graph diffusion, we need to compute:

Seu= e LMy 4 F(L+MMS.
S—— —_—
) (B)

6.4.1 The Strang formula

To compute (A), we use a Strang formula method.

Theorem 6.4.1 (Strang formula). Forall N € Nand X,Y € RNXN,

€X+Y — (eY/ZkeX/keY/2k)k + O(k—Z)

Proof. By considering the Taylor series and collecting terms, one finds that eX*Y" and

oY 12X 5V 2

agree until the third-order terms. Hence

e XIKHY /K _ Y /2K X[k Y /2K | o(k™).

Taking the k™ power of both sides completes the proof. ]

6.4.2 The Nystrom-QR method for £

To apply the Nystrom-QR method from to L%, there are a couple extra steps.
First, we use to approximate the degrees:

_ ~ wxXx -1 _. ]
d=wl~x (CUYX) Wyx (a)xx a)xy) 1=:4d.

Next, we define D = diag(d) and apply the Nystrsm-QR technique to D~(+9)/2D=(r+5)/2
to get

& = D—(r+s)/2wD—(r+s)/2 ~ D—(r+s)/2wD—(r+s)/2 ~ UZUT.

Finally,

L((r+s)/2,(r+s)/2) — Dl—r—s _ D—(r+s)/2wD—(r+s)/2 ~ Dl—r—s _ UZUT.

Then we get an approximate SVD for £

L(r,s) — D(s—r)/Z_L((r+s)/2,(r+s)/2)D(r—s)/Z ~ Dl—r—s _ (D(S_r)/ZU)Z(D(r_S)/ZU)T.



66 CHAPTER 6. IMAGE SEGMENTATION WITH THE GRAPH MBO SCHEME

6.4.3 Computing (A)

Given £ ~ A - U;XU] with UTU; = Ik and A a diagonal matrix, for any u € V we
compute (writing 6t := 7/k)

T LMy, e—T(A+M—ulzu2T)

_ (e—%T/k(A+M)eT/kU12Uge—%T/k(A+M))k u+0(k2)

(6.2)
k
= (e_%ét(AJrM) (I + Uy (e — IK)UZT) e_%ét(AJ’M)) u + O(612).
That is, we define e " £*M)y = v, where vy = u and
Vyaq = e—bt(A+M)vr " e—%bt(A+M)U1(eétZ _ IK)uzTe—%bt(fHM)vr
(6.3)

= 01(5t) @ vy + a3(5t) © (ul (”z(ét) © (UzT (a3(8t) © ”f))))

where O is the Hadamard (i.e. elementwise) product, a1(6t) := exp(—6t(u + diag(A))),
ay(6t) := exp(6t diag(X)) — 1k, and az(6t) = exp(—%ét(‘u + diag(A))) is the elementwise
square root of a1(0t) (where exp is applied elementwise, and 1k is the vector of K ones).

6.44 Computing (B)

Computing (B) is a little less glamorous, but the upside is that it only needs to be
computed once, since it is independent of u. The most straightforward way to compute

it is to observe that it equals S;0. Hence, we want to compute a solution to from
initial condition 0. One way to do this is compute ,le.
du

= = —Lu(t) = M(u(t) - ),

as in [MKB13] via the semi-implicit Euler scheme

Up+1 — Uy

of =—Lupy — My, - f)

This scheme is implicit in .£ because this system is stiff, i.e. there is a large ratio between
the small and large eigenvalues. This has solution

Ups1 = (I + 6t L) (uy — 5tM(uy — f))
~ (I+0tA — StULZU, ) H(uy — StM(uy — f)).
This works best in the » + s = 1 case, where A = I and so

Upe1 ~ (1L +0t) = StULZU, ) (uy — SH(Muy — f))
~ Uy ((1+ 6t)Ik — 6tZ)~1US (uy — St(Muy, — f)),

where we have used the approximation I ~ U UZT . Thus, we define b = vy where vy = 0
and

041 1= Ui(ag © (Ug (v, = 5t(u © 0, = f)))), (64)
where ag = (1 + 6t — 6t diag(X))~'.
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Note. In the general case, this can still be computed using the Woodbury identity:
([+6tA=ot Uy ZUT) ™! = (I+5tA)™! (1 + St (—X71 + StUT (I + oA Uy Ul (1 + 5tA)—1) .

That is, let a4 := (1 + 6t diag(A))~!. Then
(I+0tA - 8thZU, ) v = as © (v + St(U1w))

where w solves
(X7 + 6tU; (a4 © Un))w = U] (a4 © v).

This is more cumbersome than the r + s = 1 case, and becomes less well-behaved if X is
not invertible.

6.5 Interlude: numerically testing these methods

6.5.1 Comparison of methods on a toy image

In this section, we shall compare the accuracy of the above methods for two approxima-
tion tasks. First, the task of approximating the symmetric normalised Laplacian £1/21/2),

and second, the task of approximating R A {1072,1071,1,10}. These will
both be performed on a graph built from a small enough image for us to compute the
ground truth.

In particular, we will consider graphs built on the pixels of the 60 X 60 greyscale image
from . Hence, V = {1, ..., 3600}, and for i # j € V we will define

(T —T:)2
w;j = eI,

where 7; € [0, 1] is the intensity value of pixel i.
We will consider the following methods for these tasks, for K € {50, 100, 150, ..., 500}:

1/2,1/2

i. Optimal rank K method: Approximate £! ) by I minus the best rank K ap-

proximation of @, i.e.
£(1/2,1/2) ~1- ubest):bestuT

best”

where Xt is a KX K diagonal matrix with diagonal the largest negative eigenvalues
of @, as these correspond to the largest eigenvalues of £1/21/2) and Upes; is an N x K
matrix of the corresponding eigenvectors. We approximate the matrix exponential
using intead the largest positive eigenvalues of @ (as these correspond to the largest
eigenvalues of ¢!?) and the corresponding eigenvectors.

ii. Nystrom method: We will compute rank K decomposition:

@ ~ UgrZQrUg

using the Nystrom-QR method. We will then approximate £1/21/2) and ¢~£"*"?
as in the previous method. As these methods are randomised we will repeat them
ten times and present the median error and mean times in the below results.

The two tests we shall perform are as follows:

1Defined by [rand(30) magic(30)/max(max(magic(30))); 0.5%ones(30) min(max(0,0.5 +
randn(30)/2),1);] in MATLAB.
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Figure 6.1: Test 60 X 60 image for numerical experiments.
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1/2,1/2)

A. Given an approximation L for £ , we will compute the relative Frobenius error

1/2,1/2))12
||L—£( / /)”F
2 7

||L(1/2,1/2)||F

where ||A||% =tr(ATA) =3 ij Afj is the Frobenius norm.

Ztr2/2)

B. Given an approximation E for e , we likewise will compute

402172
|E—et£ I

et P2

6.5.2 Results

We present the results and timings for task (A) in

5 107° F L B B 10! F ]
t: E best eigendecomposition E E E
g - —A— Nystrom-QR — - —
2 1070 ) 1 = 100} 4
g 4 E \5 E best eigendecomposition E
8 i E | | —A— Nystrom-QR B
o -7 A4 = -1 L E
g 107°F = 107 E
k& B f B f
& 10—8 | | | | | | | | 10—2 4 | | | | | | | |
50 100150200250300350400450500 50 100150200250300350400450500
Rank K Rank K

Figure 6.2: Relative Frobenius errors (left) and computation times (right) for the rank K
approximate eigendecompositions of £1/21/2),

We present the results for task (B) in . We omit the timings as they do not
vary significantly between methods.

6.6 The full pipeline

We summarise the full pipeline in
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Relative Frobenius error

105

10

1077

Relative Frobenius error

1078

50 100150200250300350400450500

10~

10—11

10712

10710 4

A

—A— Nystrom-QR

best eigendecomposition

Relative Frobenius error

50 100150200250300350400450500
Rank K

A

—&— Nystrom-QR

best eigendecomposition

Rank K

Relative Frobenius error

107

1078

10~

1071

4

best eigendecomposition

—A— Nystrom-QR

50 100150200250300350400450500
Rank K

1074
A
107
1078

10—10

—A— Nystrom-QR

best eigendecomposition | |

50 100150200250300350400450500

Rank K

Figure 6.3: Relative Frobenius errors to et L for ¢ = 1072 (top left), t = 107! (top
right), t = 1 (bottom left), and ¢ = 10 (bottom right)
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Algorithm 1 Segmentation algorithm using the MBO scheme.

1: function MBOSeG(Z, i, f,V,Z,K,a,0,0,1,k, kp,7,5) > Segments an
2: image I by iterating an MBO scheme. 7 : V — R¢, € Vo) f €YV, k ky, K€EN,
3: a,0,0,T€[0,00),1,s €R. Requires: K< |V|, uly\z = fly\z =0,r+s =1
—— Encoding 1 as a graph —
4:  z = feature_map(J) > Computes the feature vectors z of 1
5 Q:(i,f)— e~llzi=zjl3/0? > Defines a function that maps (i, j) to its weight w;;
—— Nystrém-QR for L") ——
6: X = random_subset(V, K) > Computes a random subset of V of size K
7. wxx = QX,X) > Applies Q to build the sub-matrix of w with 7, j € X
8 wyx =QWV,X) > Builds the sub-matrix of w withi € V and j € X
9 d=wyx (0zk (©T,1)) > Uses to approximate d = w1
10 Qyx = d-0+9)/2 g wyx > Applying © columnwise, i.e. (CT)V)(),'/’ = LAil._(H—S)/Z(wvx),‘]'
11:  [Q, R] = thinQR(&vx) > Computes thin QR factorisation &yx = QR
122 S =RwyyRT > Computes S € RKXK
13 S=(S+S7))2 > Corrects symmetry-breaking computational errors
14:  [D,Z] = eig(9) > Computes eigendecomposition S = PLOT
15 U=Q
16 Uy =d6n20U
7. Up=dr92oU > L0 ~ DI —upzul
Computing b
> Method below requires r + s = 1; see for general case
18 ag=(1+1/ky — 7/kp diag(X))™? > Reciprocation applied componentwise
190 b=0
20. forj=1tok, do
21 b=Ui(ap0 (UzT(b —1/kp(u © (b - £))))) > Euler scheme step, see
22:  end for
—— Set-up for MBO scheme ——
23:
240 a1 =exp(—7/k(u + d1-7-s)) > exp applied componentwise
25.  ap = exp(t/kdiag(X)) — 1k > exp applied componentwise
26: a3 = sqrt(ay) > a1, az, and a3 are for the Strang formula iterations, see
27 u=a xnz+f > Initial condition: the a priori segmentation on
28: the training data pixels, @ on the rest
—— The MBO scheme
29 m=0
30:  while [[u" — u™! ||§/||um ||§ > o6do > Until stopping condition met
— Diffuse u™
31: v=u"
32: forj=1tok do
33: v=0100+a30 (U (220 (U] (a3 ©0)))) > Strang formula step, see
34: end for
35: v=0v+b >v =~ S;u", see
—— Threshold v ——
36: Va={ieV|v =1}
37: u"™l = yxy, > Applies the MBO thresholding
38: m=m+1
39: end while
40:  return u™

41: end function
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6.7 Results

We give some examples of segmentations using the above method on cow images from
the Microsoft Research Cambridge Object Recognition Image Database. For more details
on these examples, see Budd, Van Gennip, and Latz [BvL.21] and Budd [Bud22].

6.7.1 RGB example

Data image Image

Data segmentation Ground truth segmentation

Figure 6.4: Two cows example. Top-left: the reference data image. Top-right: the image
to be segmented. Bottom-left: the a priori segmentation f (which is a segmentation of
the reference data image). Bottom-right: the ground truth segmentation of the top-right
image. Both segmentations were drawn by hand by the authors.
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Figure 6.5: Progression of MBO scheme over the course of its iterations. Reproduced
from [Bud?22, Fig. 5.11(c)].
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Figure 6.6: Image masked with MBO segmentation, reproduced from [Bud?22, Fig. 5.9(d)].
The segmentation accuracy is 98.4622% and run time was 2.5s.
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6.7.2 Greyscale example

Data image Image

Figure 6.7: Greyscale two cows example. Left: reference data image. Right: image to be
segmented. Ground truth segmentations are as in Figure 6.4.
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u =150, o =1000,
error = 5.54%,
time = 6.628s

Figure 6.8: Progression of MBO segmentation of greyscale two cows. The higher run
time is due to using a larger K in the Nystrom-QR. Reproduced from [Bud22, Fig. 5.16(c)].
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