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Chapter 1

A brief overview of mathematical
image processing

1.1 What is an image?

1.1.1 Basics of images

Definition 1.1.1 (Image). In this course, an image ℐ will be a function from some finite
set of pixels, which we will denote by 𝑉 (for reasons which will eventually become clear),
into R𝑑.

What is 𝑑? That depends on the type of image. There are three common cases. If the

image is a greyscale image then 𝑑 = 1 and indeed we will typically constrain the values of

the image to lie in [0, 1].
If the image is a colour image then typically 𝑑 = 3. The most common case is

for the three components of the image values (called the channels of the image) to refer

respectively to the amount of red, green, and blue at that pixel–this is called an RGB image.

However, other decompositions of colour images exist, such as into hue, saturation, and

value channels (HSV) and into luma, blue chroma, and red chroma channels (YCbCr).

We will not in this course dwell on the details of these different colour spaces. Finally,

in the case of hyperspectral images the value each pixel will have a very large number of

channels, one for each of the spectral components measured. In such cases 𝑑 will be very

large.

Figure 1.1: A greyscale image
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6 CHAPTER 1. A BRIEF OVERVIEW OF MATHEMATICAL IMAGE PROCESSING

Figure 1.2: A colour image (far left) along with its R, G, and B channels. Image is

from the Microsoft Research Cambridge Object Recognition Image Database, available

at https://www.microsoft.com/en-us/research/project/image-understanding/.

Note. It will often be useful to think of 𝑉 as a subset of some domain Ω ⊆ R2
. Likewise,

it can be useful to think of the image ℐ : 𝑉 → R𝑑 as being a restriction of a continuous

image ℐ : Ω → R𝑑.

1.1.2 What do “natural” images look like?
However, not all functions on a set of pixels correspond to realistic images. Compare the

two images below.

Figure 1.3: Ordinary RGB image (left) vs. a random Gaussian function on the same pixel

set (right).

Question. What features do normal images have that white noise does not?

1.2 Image compression
Images are typically never actually stored as such functions, as for typical images such a

representation tends to be extremely redundant, and takes up a lot of memory.

A major topic in image processing is image compression, the task of storing an image

in a way that takes up much less space.

1.2.1 Lossy compression: JPEG
A straightforward approach to compressing an image is to throw away information that
the human eye can’t see. This is the basic idea behind JPEG compression. Very very
briefly, the idea of JPEG compression is to express our image ℐ in a particular basis

ℐ = 𝑎1𝜑1 + 𝑎2𝜑2 + · · ·

https://www.microsoft.com/en-us/research/project/image-understanding/
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where the basis elements 𝜑𝑖 encode changes with a fixed frequency in the image (and

the 𝑎𝑖 can be computed using the Discrete Cosine Transform). This is analogous to

decomposing a signal into its distinct pitches. Since natural images don’t change very

frequently and the human eye can’t see these very rapid changes, the higher frequency

components can be thrown away, giving a compression.

Note. Another lossy standard JPEG2000 use the same ideas but use a different basis (a

wavelet basis) for the decomposition.

For a very accessible description of how JPEG works, I recommend the following

YouTube video https://www.youtube.com/watch?v=0me3guauqOU. For a more detailed

account, see [Wal91].

1.2.2 Lossless compression: PNG
However, it is also possible to compress images without throwing away any information,

by exploiting redundancy. This is how file formats like PNG work. Even more briefly

than before: if you wanted to compress these lecture notes, you could do so by first

exploiting how often strings of letters are repeated to replace repetitions with references

to earlier strings, and then encoding what is left. PNG uses some clever tricks to apply

the same ideas to images. See the same YouTuber for a very good explanation https:
//www.youtube.com/watch?v=EFUYNoFRHQI. For a more detailed account, see [Roe99].

1.3 Inverse problems in imaging
Many of the most important tasks in image processing involve undoing something that has
happened to an image. These include:

• Image Reconstruction: The task of reconstructing an image from indirect and/or

noisy measurements.

• Image Registration: The task of aligning distorted images.

• Image Inpainting: The task of filling in gaps in an image.

See Figures 1.4 and 1.5 for examples of these tasks.

Figure 1.4: Example of image denoising, a special case of image reconstruction, using

the BM3D algorithm [MAF20]. Image is from the Microsoft Research Cambridge Object

Recognition Image Database. Left-to-right: original image, noised version of the original

image, and a BM3D denoising of the noised image.

1.3.1 Inverse problems
The general setting for all of these tasks is that of an inverse problem. We have some

observations 𝑦 of an object 𝑥∗, which are related via

𝑦 = 𝒯 (𝑥∗) + 𝑒 (1.1)

https://www.youtube.com/watch?v=0me3guauqOU
https://www.youtube.com/watch?v=EFUYNoFRHQI
https://www.youtube.com/watch?v=EFUYNoFRHQI
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Figure 1.5: Example of image inpainting, reproduced from Lozes et al. [LEL14, Figure 9].

where 𝒯 is the forward model, typically a linear map, and 𝑒 is an error term (e.g. a

Gaussian random variable). Given 𝑦, 𝒯 , and the distribution of 𝑒, we seek to find 𝑥 ≈ 𝑥∗.

Hadamard well-posedness

In [Had02], Hadamard gave three conditions for a mathematical model to be well-posed:

1. A solution should exist.

2. That solution should be unique.

3. The solution should vary continuously with the input.

However, (1.1) is in general an ill-posed problem. The noise may bring 𝑦 outside of the

image of 𝒯 , solutions may be far from unique for a given 𝑦, and even if 𝒯 is invertible

and 𝑦 lies in its image, the inverse map might be highly sensitive to noise. So we must

proceed in a clever way.

Tikhonov–Philips variational method

A key approach to solving such problems, deriving from pioneering work by Tikhonov

[Tik63] and Phillips [Phi62] in the 1960s, has been to solve a variational problem of the

form

arg min

𝑥

𝑅(𝑥) + 𝜆𝐷(𝒯 (𝑥), 𝑦) (1.2)

where 𝑅 is a regulariser, which encodes a priori information about the solution 𝑥, and 𝐷
is a distance term which enforces fidelity to our observed data, e.g.

𝐷(𝒯 (𝑥), 𝑦) := ∥𝒯 (𝑥) − 𝑦∥2

2
.

𝐷 encodes information about the error 𝑒. The parameter 𝜆 determines the trade-off

between what we a priori expect to see and what our observations depict.

To explain where (1.2) comes from, it will be helpful to put things into a Bayesian

setting. Suppose that we have a random variable 𝑋 describing the (unknown) true object

we seek to find, and a random variable 𝑌 describing our observations. Then by (1.1), 𝑋
and 𝑌 are related via

𝑌 = 𝒯 (𝑋) + 𝑒 (1.3)

where, for example, 𝑒 ∼ 𝒩(0, 𝜎2𝐼). We then have an observation 𝑌 = 𝑦, and the idea

behind the Tikhonov–Phillips approach is to find an 𝑥 which is the maximum a priori
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(MAP) estimate for 𝑋 given this observation. That is, solving

arg max

𝑥

P(𝑋 = 𝑥 |𝑌 = 𝑦).

By Bayes’ theorem, this is equivalent to solving

arg max

𝑥

P(𝑋 = 𝑥)P(𝑌 = 𝑦 |𝑋 = 𝑥)

which by (1.3) further simplifies to

arg max

𝑥

P(𝑋 = 𝑥)P(𝑒 = 𝑦 − 𝒯 (𝑥)). (1.4)

The former term, P(𝑋 = 𝑥), is our prior probability for 𝑥 to be the correct reconstruction. It

quantifies how “reasonable” a candidate reconstruction 𝑥 is. Let us define our regulariser

𝑅 such that

P(𝑋 = 𝑥) =: 𝑒−𝑅(𝑥).

The latter term in (1.4) depends entirely on our noise model for 𝑒, which will define our

data fidelity term via

P(𝑒 = 𝑦 − 𝒯 (𝑥)) =: 𝑒−𝜆𝐷(𝒯 (𝑥),𝑦).

For example, if 𝑒 ∼ 𝒩(0, 𝜎2𝐼) then

P(𝑒 = 𝑦 − 𝒯 (𝑥)) = 𝑒
− 1

2𝜎2
∥𝑦−𝒯 (𝑥)∥2

2 .

Therefore, (1.4) reduces to (1.2) by taking − log of the objective functional.

1.3.2 Examples
Image denoising The simplest case of image reconstruction is denoising, i.e. the task

of removing noise from an image. Here we observe an image 𝑦 which is related to our

“true” non-noisy image ℐ∗
via:

𝑦 = ℐ∗ + 𝑒
where 𝑒 is the noise. This is exactly the setting of (1.1) with 𝒯 = id, the identity map.

Medical Imaging: MRI/CT Another important example of imaging that fits into this

framework perhaps surprisingly well is medical imagining. It would take too long to

get into the details of the physics involved, but the measurements of Magnetic Reso-

nance Imaging (MRI) turn out to just correspond to 𝒯 = FT the Fourier transform, and

Computed Tomography (CT) imaging corresponds to a Radon transform.

Inpainting Here 𝒯 is a projection onto the undamaged region of the image.

1.3.3 Choosing 𝑅: The Rudin–Osher–Fatemi (ROF) denoising method
The real magic in this variational approach to image reconstruction is the choice of

regulariser, which as we saw encodes our prior model for what images “should” look

like. The original Tikhonov work used 𝑅(ℐ) = 1

2
∥ℐ∥2

2
which leads to an easy to solve

minimisation problem but doesn’t really capture the essence of what an image should

be. One of the most important papers in image processing is that of Rudin, Osher, and

Fatemi [ROF92] from 1992, which proposed using total variation as a regulariser.
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What is total variation?

Definition 1.3.1 (Total Variation). Let Ω ⊂ R𝑛 be open, and let 𝑓 ∈ 𝐿1(Ω). Then the
total variation of 𝑓 has the following variational definition:

TV( 𝑓 ) := sup

{∫
Ω

𝑓 (𝑥)div 𝜑(𝑥) 𝑑𝑥
����𝜑 ∈ 𝐶1

𝑐 (Ω,R𝑛), ∥𝜑∥𝐿∞(Ω) ≤ 1

}
.

The set of 𝑓 ∈ 𝐿1(Ω) with TV( 𝑓 ) < ∞ is denoted BV(Ω).

If 𝑓 ∈ 𝐶1(Ω̄), Ω is bounded, and Ω has 𝐶1
boundary, then the following identity holds

TV( 𝑓 ) =
∫
Ω

∥∇ 𝑓 (𝑥)∥2 𝑑𝑥. (1.5)

Proof (sketch). We note the following fact that under the assumed conditions∫
Ω

𝑓 (𝑥)div 𝜑(𝑥) 𝑑𝑥 = −
∫
Ω

∇ 𝑓 (𝑥) · 𝜑(𝑥) 𝑑𝑥

for all valid 𝜑. Thus we obtain the upper bound∫
Ω

𝑓 (𝑥)div 𝜑(𝑥) 𝑑𝑥 ≤
����∫

Ω

∇ 𝑓 (𝑥) · 𝜑(𝑥) 𝑑𝑥
���� ≤ ∫

Ω

∥∇ 𝑓 (𝑥)∥2∥𝜑(𝑥)∥2 𝑑𝑥 ≤
∫
Ω

∥∇ 𝑓 (𝑥)∥2 𝑑𝑥.

Finally, we take valid 𝜑𝑛 approximating −∇ 𝑓 /∥∇ 𝑓 ∥2, which we can do because 𝐶1

𝑐 is

dense in 𝐿1
. Then∫

Ω

𝑓 (𝑥)div 𝜑𝑛(𝑥) 𝑑𝑥 → −
∫
Ω

∇ 𝑓 (𝑥) ·
(
−

∇ 𝑓 (𝑥)
∥∇ 𝑓 (𝑥)∥2

)
𝑑𝑥 =

∫
Ω

∥∇ 𝑓 (𝑥)∥2 𝑑𝑥.

so this upper bound is the supremum. □

Definition 1.3.2 (Discrete Total Variation). Let ℐ : 𝑉 → R where 𝑉 = {1, 2, ..., 𝑁}2.
Then, inspired by (1.5), we can define the total variation of ℐ by:

TV(ℐ) =
𝑁−1∑
𝑖=1

𝑁−1∑
𝑗=1

√
(ℐ𝑖+1, 𝑗 − ℐ𝑖 , 𝑗)2 + (ℐ𝑖 , 𝑗+1 − ℐ𝑖 , 𝑗)2.

Here we can see that 𝑢 is being conceptualised as a discrete approximation to a smooth
function defined on a set containing the lattice points. This is only one way to discretise
total variation, for other options see [Get12, §2].

Total variation as a regulariser

Earlier, we asked ourselves what ordinary images look like. The key thing we mentioned

was that they have regions of gradual change with the occasional sharp edge. That is,

on most of an ordinary image ℐ, ∇ℐ will be small, with the exception of a small number

of edges. Put another way, in the discrete setting the gradient of the image will be

(approximately) sparse. Thus it makes sense to minimise total variation, understood as

the 𝐿1
norm of the gradient, in order to encourage the gradient to be small. But why

minimise the 𝐿1
norm? Why not the 𝐿2

norm, which leads to a much easier optimisation

problem?
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Figure 1.6: Left-to-right: image of white square on black background, the same image

with Gaussian noise added, reconstruction with 𝑅(ℐ) = 1

2
∥ℐ∥2

2
, and reconstruction with

𝑅(ℐ) = 1

2
∥∇ℐ∥2

2
. Reproduced from [Cha00, Figure 1].

The reason is that minimising the 𝐿2
norm does not promote sparsity in the gradient,

leading to very blurry edges (see Figure 1.6). From work in compressed sensing (Candes,

Romberg, and Tao [CRT06]), it was known that the 𝐿1
norm is a good choice to promote

sparsity, making total variation the best pick.

Example ROF denoisings

Figure 1.7: ROF denoising of an RGB image, reproduced from [Get12, p.90].
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Figure 1.8: ROF denoisings of a greyscale image for various 𝜆, reproducing [Get12, p.89].

1.3.4 Choosing 𝑅: Deep learning approaches

Nowadays image processing is being taken over by deep learning methods. This course

will not be a course on deep learning, but I will briefly mention here that an important

avenue of current research in this area is using training data to learn a prior distribution,

and thereby learn 𝑅. Some example approaches for this are:

• The Plug-and-Play Prior (P3) [VBW13]: This eschews an explicit regulariser alto-

gether, via the observation that the steps involving the regulariser in most algo-

rithms look like denoisings, and replacing these with "plug-and-play" denoisings,

e.g. deep learned ones.

• Regularisation by denoising (RED) [REM17]: Has a similar idea, using a denoiser

𝐷 to define a regulariser 𝑅(𝑥) = 1

2
⟨𝑥, 𝑥 − 𝐷(𝑥)⟩.

• Adversarial Regularisation [LÖS18]: Trains a neural net to distinguish ground

truth images from images which are pesudoinverses of measurements, and uses

this discriminator as a regulariser.

For a detailed overview, see Arridge et al. [AMÖS19].
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1.4 Image segmentation and data clustering/classification

1.4.1 What is image segmentation?
The task of image segmentation is to split up an image into is component parts. For

example, in Figure 1.9 those parts might be the cows, the grass, and the sky.

Figure 1.9: Image of cows, from the Microsoft Research Cambridge Object Recognition

Image Database.

In practice, one might often only care about one of these parts, e.g. the cows, with

the rest of the image being regarded as “background”. For example, if one were looking

for a tumour in a medical scan, all one would care about is “tumour” vs. “background”.

This is called binary segmentation.

1.4.2 Data clustering and classification
Image segmentation is a special case of the task of data clustering/classification. Let

ℐ : 𝑉 → Rℓ describe not necessarily an image but just a collection of data points (indexed

by 𝑉) living in Rℓ . Classification and clustering seek a function 𝑢 : 𝑉 → 𝐿 where 𝐿 is a

finite set of labels. For binary segmentation, 𝐿 = {0, 1}.
The difference between classification and clustering is that clustering is unsupervised,

it just uses the geometry of the data to sort into into labels. Classification is supervised
(or (semi-)supervised), which means we have an additional subset 𝑍 ⊆ 𝑉 as training data,

with a known a priori labels 𝑓 : 𝑍 → 𝐿 to which we want 𝑢 to conform. We say that the

task is semi-supervised when 𝑍 is really small relative to 𝑉 .

Note. In image segmentation, 𝑉 is the set of pixels in an image. But we could instead

take𝑉 to be a set of images in this setting (in which case ℓ would then become very large,

equal to the number of pixels times the number of channels in each image). The data

clustering task would then become the task of labelling this set of images, e.g. labelling

whether each image was of a “dog" or “cat". This is another very important task in image

processing.

1.4.3 Example: Mumford–Shah and Chan–Vese segmentation
The celebrated segmentation approach of Mumford and Shah [MS89] works as follows.

Suppose that we wish to segment a greyscale image which we shall represent by the
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continuous image ℐ : Ω → R. We will do this by finding a piecewise smooth image 𝒥
and a sum of contours Γ minimising the Mumford–Shah functional

MS𝜇,𝜆(𝒥 , Γ) :=

∫
Ω\Γ

∥∇𝒥(𝑥)∥2

2
𝑑𝑥 + 𝜆

∫
Ω

(𝒥(𝑥) − ℐ(𝑥))2 𝑑𝑥 + 𝜇|Γ|

where |Γ| denotes the total length of Γ and 𝒥 is smooth on Ω \ Γ. The segments here are

regions bounded by Γ. The final term in the energy may seem innocuous, but it is in fact

very important, as it drives the segmentation to respect the geometry of the image.

Note. Although this segmentation energy is very natural, it turns out to be very compli-

cated to minimise in general. We will not discuss methods for minimising this energy in

this course, see e.g. [BZ87] for approaches.

A simplification of this problem considered by Mumford and Shah is to restrict 𝒥
to be piecewise constant on Ω \ Γ, where Γ = 𝜕𝐶 for some closed set 𝐶, simplifying the

problem to:

min

𝒥 ,Γ

∫
Ω

(𝒥(𝑥) − ℐ(𝑥))2 𝑑𝑥 + 𝜇|Γ|. (1.6)

Theorem 1.4.1 ( [MS12, Theorem 5.1]). Let ℐ be a bounded measurable function on

Ω. Then there exists Γ and 𝒥 (piecewise constant on Ω \ Γ) minimising (1.6).

Proof. Beyond the scope of this course. □

Chan and Vese [CV01] took as their starting point the piecewise constant Mumford–

Shah model, and made two changes: first, 𝑥 must take the following simplified form

𝒥(𝑥) =
{
𝑐1 , 𝑥 ∈ 𝐶,
𝑐2 , otherwise.

Second, they added a penalisation for the area of 𝐶. Thus, the problem becomes

min

𝑐1 ,𝑐2 ,𝐶
𝜇|𝜕𝐶 | + 𝜈 Area(𝐶) + 𝜆1

∫
𝐶

(ℐ(𝑥) − 𝑐1)2 𝑑𝑥 + 𝜆2

∫
Ω\𝐶

(ℐ(𝑥) − 𝑐2)2 𝑑𝑥. (1.7)

Theorem 1.4.2. For 𝐶 ⊆ Ω a closed set, let 𝜒𝐶 := 1 on 𝐶 and 0 on Ω \ 𝐶. Then

|𝜕𝐶 | = TV(𝜒𝐶).

Let our classifier 𝑢 = 𝜒𝐶 . Then (1.7) can be re-written:

min

𝑐1 ,𝑐2 ,𝑢
𝜇TV(𝑢) +

∫
Ω

𝜈𝑢(𝑥) + 𝜆1𝑢(𝑥)(ℐ(𝑥) − 𝑐1)2 + 𝜆2(1 − 𝑢(𝑥))(ℐ(𝑥) − 𝑐2)2 𝑑𝑥. (1.8)

Then [CV01] solve this using level-set methods, which would bring us beyond the

scope of the course to describe.



Chapter 2

A brief review of the graph
theory that we will need

2.1 What is a graph?

Figure 2.1: An example of a finite, simple, connected, and undirected graph.

15
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Definition 2.1.1 (Graph). A (finite) graph 𝐺 is a (finite) set of vertices𝑉 which are linked
by edges 𝐸 ⊆ 𝑉2. We will primarily be concerned with graphs with the following extra
properties:

• Simple: there is at most one edge between two vertices, and no edge connects a vertex
to itself.

• Weighted: every edge (𝑖 , 𝑗) ∈ 𝐸 has an associated weight 𝜔𝑖 𝑗 > 0. (For completeness,
we extend 𝜔 to 𝑉2 via 𝜔𝑖 𝑗 = 0 if (𝑖 , 𝑗) ∉ 𝐸.)

• Undirected: if (𝑖 , 𝑗) ∈ 𝐸 then (𝑗 , 𝑖) ∈ 𝐸, and 𝜔𝑖 𝑗 = 𝜔 𝑗𝑖 .
• Connected: For each 𝑖 , 𝑗 ∈ 𝑉 , there is a sequence of edges that connects 𝑖 to 𝑗. (More
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generally, if this is true for some 𝑖 , 𝑗 ∈ 𝑉 then we say that 𝑖 , 𝑗 lie in the same connected

component of 𝐺. These connected components partition the graph, except for any
isolated vertices.)

Definition 2.1.2 (Adjacency matrix/weight matrix). The adjacency matrix or weight

matrix is the matrix 𝜔 := (𝜔𝑖 𝑗), sometimes also denoted by 𝐴. It uniquely defines the graph,
up to a relabelling of the vertices (and a corresponding permutation of the row/columns of
the matrix).

Definition 2.1.3 (Degree of a vertex). For a vertex 𝑖 ∈ 𝑉 , we define the degree of 𝑖 by:

𝑑𝑖 :=
∑
𝑗∈𝑉

𝜔𝑖 𝑗 .

For a connected graph, 𝑑𝑖 > 0 for all 𝑖 ∈ 𝑉 . But if 𝑑𝑖 > 0 for all 𝑖 ∈ 𝑉 does not necessarily
mean that the graph must be connected, it only excludes isolated vertices.

Note. In this course, we will assume that 𝑑𝑖 > 0 for all 𝑖 ∈ 𝑉 for all of our graphs.

2.2 Functions on graphs

Definition 2.2.1 (Vertex and edge functions on graphs). On 𝐺 we define the spaces
(𝑋 ⊆ R):

𝒱 := {𝑢 : 𝑉 → R} , 𝒱𝑋 := {𝑢 : 𝑉 → 𝑋}, ℰ := {𝜑 : 𝐸 → R} .

Since𝑉 is finite, we can interchangeably view elements of 𝒱 and 𝒱𝑋 as functions or as real
vectors. Next, we define the spaces of time-dependent vertex functions (where 𝑇 ⊆ R an
interval)

𝒱𝑡∈𝑇 := {𝑢 : 𝑇 → 𝒱} , 𝒱𝑋,𝑡∈𝑇 := {𝑢 : 𝑇 → 𝒱𝑋} .

Definition 2.2.2 (Graph gradient). For 𝑖 , 𝑗 ∈ 𝑉 and 𝑢 ∈ 𝒱 we define the graph gradient

of 𝑢 at (𝑖 , 𝑗) to be:

(∇𝑢)𝑖 𝑗 :=

{
𝑢𝑗 − 𝑢𝑖 , (𝑖 , 𝑗) ∈ 𝐸,
0, otherwise.

Definition 2.2.3 (Graph divergence). For 𝑖 ∈ 𝑉 and 𝜑 ∈ ℰ we define the graph

divergence of 𝜑 at 𝑖 to be:
(div 𝜑)𝑖 :=

∑
𝑗∈𝑉

𝜔𝑖 𝑗𝜑𝑖 𝑗

Definition 2.2.4 (Inner products on our function spaces). For a parameter 𝑟 ∈ [0, 1]
we define the following inner products on 𝒱 and ℰ:

⟨𝑢, 𝑣⟩𝒱 ,𝑟 :=
∑
𝑖∈𝑉

𝑢𝑖𝑣𝑖𝑑
𝑟
𝑖 , ⟨𝜑, 𝜃⟩ℰ :=

1

2

∑
𝑖 , 𝑗∈𝑉

𝜑𝑖 𝑗𝜃𝑖 𝑗𝜔𝑖 𝑗 (2.1)
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and define the inner product on 𝒱𝑡∈𝑇 (or 𝒱𝑋,𝑡∈𝑇):

(𝑢, 𝑣)𝑡∈𝑇 :=

∫
𝑇

⟨𝑢(𝑡), 𝑣(𝑡)⟩𝒱 ,𝑟 𝑑𝑡 =
∑
𝑖∈𝑉

𝑑𝑟𝑖 (𝑢𝑖 , 𝑣𝑖)𝐿2(𝑇;R)

where (·, ·)𝐿2(𝑇;R) is the standard continuum 𝐿2 inner product. These inner products induce
norms ∥ · ∥𝒱 ,𝑟 , ∥ · ∥ℰ , and ∥ · ∥𝑡∈𝑇 in the usual way.

Definition 2.2.5 (𝐿2
space on a graph). We define the 𝐿2 space:

𝐿2(𝑇;𝒱) := {𝑢 ∈ 𝒱𝑡∈𝑇 | ∥𝑢∥𝑡∈𝑇 < ∞} ,

which we will consider as a normed space with norm ∥ · ∥𝑡∈𝑇 . We also define the local 𝐿2

space:
𝐿2

𝑙𝑜𝑐
(𝑇;𝒱) = {𝑢 ∈ 𝒱𝑡∈𝑇 |∀𝑎 < 𝑏 ∈ 𝑇, 𝑢 |(𝑎,𝑏) ∈ 𝐿2((𝑎, 𝑏);𝒱)}.

Proposition 2.2.1. For all 𝑢 ∈ 𝒱 and 𝜑 ∈ ℰ such that 𝜑𝑖 𝑗 = −𝜑 𝑗𝑖 ,

−⟨div 𝜑, 𝑢⟩𝒱 ,0 = ⟨𝜑,∇𝑢⟩ℰ .

Proof. Expanding out the definition of ⟨div 𝜑, 𝑢⟩𝒱 ,0:

−
∑
𝑖∈𝑉

(div 𝜑)𝑖𝑢𝑖 = −
∑
𝑖 , 𝑗∈𝑉

𝜔𝑖 𝑗𝜑𝑖 𝑗𝑢𝑖 =
∑
𝑖 , 𝑗∈𝑉

𝜔𝑖 𝑗𝜑 𝑗𝑖𝑢𝑖

=
1

2

∑
𝑖 , 𝑗∈𝑉

𝜔𝑖 𝑗𝜑 𝑗𝑖𝑢𝑖 + 𝜔 𝑗𝑖𝜑𝑖 𝑗𝑢𝑗

=
1

2

∑
𝑖 , 𝑗∈𝑉

𝜔𝑖 𝑗𝜑𝑖 𝑗(𝑢𝑗 − 𝑢𝑖) = ⟨𝜑,∇𝑢⟩ℰ .

□

2.3 The graph Laplacian
The most important graph operator for this course will be the graph Laplacian, defined

as follows.

Definition 2.3.1 (Graph Laplacian). For a graph 𝐺 = (𝑉, 𝐸, 𝜔) with |𝑉 | = 𝑁 , define
𝐷 := diag(𝑑) (i.e. 𝐷𝑖𝑖 := 𝑑𝑖 , and 𝐷𝑖 𝑗 := 0 otherwise) to be the degree matrix of 𝐺. Then
for parameters 𝑟, 𝑠 ∈ R, we define the graph Laplacian of 𝐺 to be the operator represented
by the matrix:

ℒ(𝑟,𝑠)
𝑁

:= 𝐷−𝑟(𝐷 − 𝜔)𝐷−𝑠 . (2.2)

That is

(ℒ(𝑟,𝑠)
𝑁

𝑢)𝑖 = 𝑑−𝑟𝑖

∑
𝑗∈𝑉

𝜔𝑖 𝑗

(
𝑢𝑖

𝑑𝑠
𝑖

−
𝑢𝑗

𝑑𝑠
𝑗

)
.

This operator can be thought of as a discrete diffusion operator on the graph, or

simply as a matrix ℒ(𝑟,𝑠)
𝑁

∈ R𝑁×𝑁
. When it is clear from context, 𝑁 and (𝑟, 𝑠) may be
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omitted. Common choices of (𝑟, 𝑠) are: (0, 0), the combinatorical Laplacian, also called

the unnormalised Laplacian; (1, 0), the random walk Laplacian; and (1/2, 1/2), the symmetric
normalised Laplacian.

Exercise 1. Let 𝑢𝑖 ≤ 𝑢𝑗 for all 𝑗 ∈ 𝑉 such that 𝜔𝑖 𝑗 > 0 (i.e., 𝑖 is a local minimiser of 𝑢).

Show that (ℒ(𝑟,0)𝑢)𝑖 ≤ 0.

Exercise 2. Show that

⟨ℒ(𝑟,𝑠)𝑢, 𝑣⟩𝒱 ,𝑟−𝑠 = ⟨∇𝐷−𝑠𝑢,∇𝐷−𝑠𝑣⟩ℰ .

Exercise 3. Why do we call the matrix ℒ(𝑟,𝑠)
a Laplacian?

Proposition 2.3.1. ℒ(𝑟,𝑠)
is self-adjoint with respect to ⟨·, ·⟩𝒱 ,𝑟−𝑠 .

Proof.

⟨𝑢,ℒ(𝑟,𝑠)𝑣⟩𝒱 ,𝑟−𝑠 = ⟨𝑢, 𝐷−𝑠ℒ(0,0)𝐷−𝑠𝑣⟩𝒱 ,0

= ⟨𝐷−𝑠ℒ(0,0)𝐷−𝑠𝑢, 𝑣⟩𝒱 ,0

= ⟨𝑣, 𝐷−𝑠ℒ(0,0)𝐷−𝑠𝑢⟩𝒱 ,0

= ⟨𝑣, 𝐷𝑠−𝑟𝐷−𝑠ℒ(0,0)𝐷−𝑠𝑢⟩𝒱 ,𝑟−𝑠 = ⟨𝑣,ℒ(𝑟,𝑠)𝑢⟩𝒱 ,𝑟−𝑠 .

□

Proposition 2.3.2. For all 𝑟, 𝑠 ∈ R, ℒ(𝑟,𝑠)
is similar to ℒ((𝑟+𝑠)/2,(𝑟+𝑠)/2)

. It follows that

for all 𝑟, 𝑠 ∈ R

i. ℒ(𝑟,𝑠)
is similar to a diagonal matrix Λ.

ii. There exist𝑈,𝑉 such that ℒ(𝑟,𝑠) = 𝑈Λ𝑉𝑇
and 𝑉𝑇𝑈 = 𝑈𝑉𝑇 = 𝐼.

iii. For all 𝑟, 𝑠 ∈ R, ℒ(𝑟,𝑠)
is positive semi-definite with respect to ⟨·, ·⟩𝒱 ,𝑟−𝑠 , and

hence every entry in Λ is non-negative.

Proof. It is easy to check that

ℒ(𝑟,𝑠) = 𝐷−(𝑟−𝑠)/2ℒ((𝑟+𝑠)/2,(𝑟+𝑠)/2)𝐷(𝑟−𝑠)/2.

i. ℒ((𝑟+𝑠)/2,(𝑟+𝑠)/2)
is a real symmetric matrix, so there exists Φ an orthogonal matrix

and Λ a diagonal matrix such that ℒ((𝑟+𝑠)/2,(𝑟+𝑠)/2) = ΦΛΦ𝑇 . Let 𝑈 := 𝐷−(𝑟−𝑠)/2Φ.

Then ℒ(𝑟,𝑠) = 𝑈Λ𝑈−1
.

ii. Let𝑉 := 𝐷(𝑟−𝑠)/2Φ. Thenℒ(𝑟,𝑠) = 𝑈Λ𝑉𝑇
,𝑉𝑇𝑈 = Φ𝑇Φ = 𝐼, and𝑈𝑉𝑇 = 𝐷−(𝑟−𝑠)/2ΦΦ𝑇𝐷(𝑟−𝑠)/2 =

𝐼.
iii. Note that

⟨𝑢,ℒ(𝑟,𝑠)𝑢⟩𝒱 ,𝑟−𝑠 = ⟨𝑢,ℒ(𝑠,𝑠)𝑢⟩𝒱 ,0 = 𝑢𝑇ℒ(𝑠,𝑠)𝑢

It follows from Exercise 2 that

𝑢𝑇ℒ(𝑠,𝑠)𝑢 =
1

2

𝑁∑
𝑖 , 𝑗=1

𝜔𝑖 𝑗

(
𝑢𝑖

𝑑𝑠
𝑖

−
𝑢𝑗

𝑑𝑠
𝑗

)
2

≥ 0

for all 𝑢 ∈ 𝒱. Hence if ℒ(𝑟,𝑠)𝑢 = 𝜆𝑢 then 𝜆⟨𝑢, 𝑢⟩𝒱 ,𝑟−𝑠 ≥ 0 and so 𝜆 ≥ 0.

□
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2.4 The spectrum of the graph Laplacian
From now on, we denote by

0 ≤ 𝜆(1)
𝑁

≤ 𝜆(2)
𝑁

≤ · · · ≤ 𝜆(𝑁)
𝑁

the eigenvalues of ℒ(𝑟,𝑠)
𝑁

, with corresponding eigenvectors

𝜉(1)
𝑁
, · · · , 𝜉(𝑁)

𝑁
∈ 𝒱 .

Here, we omitted the dependence on (𝑟, 𝑠) for ease of notation. When it is clear from

context, we also omit the dependence on 𝑁 .

The value 𝜆(2)
is called the algebraic connectivity or Fiedler value. For a connected graph

this value is strictly positive. The associated eigenvector is called the Fiedler vector.
We note the following spectral properties of ℒ.

Theorem 2.4.1. 1. The smallest eigenvalue 𝜆(1)
of ℒ is zero.

2. This eigenvalue has multiplicity equal to the number of connected components

and has corresponding eigenvectors 𝜉(𝑘) ∝ 𝐷𝑠𝜒𝑆𝑘 , where 𝑆𝑘 are the connected

components.

3. The spectral radius 𝜌(ℒ) of ℒ is bounded above by 2 max𝑖∈𝑉 𝑑
1−(𝑟+𝑠)
𝑖

.

Exercise 4. Prove the above properties.

Figure 2.2: An example of a disconnected graph (left) and that same graph with nodes

coloured according to the value of the Fiedler vector at that node (right).

2.5 Graph diffusion

Theorem 2.5.1 (Matrix exponential). For a square matrix 𝐴, define the matrix expo-
nential of 𝐴 to be the matrix:

𝑒𝐴 =

∞∑
𝑛=0

1

𝑛!

𝐴𝑛 = 𝐼 + 𝐴 + 1

2

𝐴2 + · · ·

The matrix exponential has a number of key properties:

a. If 𝐴 = 𝑈𝐵𝑈−1
, then 𝑒𝐴 = 𝑈𝑒𝐵𝑈−1

.

b. For 𝐴 ∈ R𝑛×𝑛 , if 𝐴 is symmetric then 𝑒𝐴 is positive definite.
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Figure 2.3: The graph from Figure 2.2 with an extra edge added to make it connected

(left) and that same connected graph with nodes coloured according to the value of the

Fiedler vector at that node (right).
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Figure 2.4: The spectra of the (unnormalised) graph Laplacians of the graphs from

Figure 2.2 (left) and Figure 2.3 (right), plotted on a (crunched) log scale to emphasise the

change in the second eigenvalue, indicated by a square marker.

c. If 𝐴 and 𝐵 commute, then

𝑒𝐴+𝐵 = 𝑒𝐴𝑒𝐵 .

In particular, (𝑒𝐴)−1 = 𝑒−𝐴.

d.
𝑑
𝑑𝑡
(𝑒 𝑡𝐴) = 𝐴𝑒 𝑡𝐴.

e. Define the operator norm of a matrix 𝐴 ∈ R𝑚×𝑛

∥𝐴∥ := max

𝑥∈R𝑛\{0}

∥𝐴𝑥∥2

∥𝑥∥2

.

Then if 𝐴 ∈ R𝑛×𝑛 symmetric with largest positive eigenvalue 𝜆, then

∥𝑒𝐴∥ = 𝑒𝜆.

f. If 𝐴 ∈ R𝑛×𝑛 is self-adjoint with respect to some inner product ⟨·, ·⟩𝐻 , i.e.

⟨𝐴𝑢, 𝑣⟩𝐻 = ⟨𝑢, 𝐴𝑣⟩𝐻 for all 𝑢, 𝑣 ∈ 𝑅𝑅𝑛 , then 𝑒𝐴 is self-adjoint with respect to

⟨·, ·⟩𝐻 .
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Figure 2.5: Eigenvectors of ℒ(0,0)
(left) and ℒ(1/2,1/2)

(right) for a graph built on the cow

image from Chapter 1. Figure reproduced from [BF12, Fig. 2.1].
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Proof. a.

𝑒𝐴 = 𝐼 +𝑈𝐵𝑈−1 + 1

2

𝑈𝐵2𝑈−1 + · · ·

= 𝑈

(
𝐼 + 𝐵 + 1

2

𝐵2 + · · ·
)
𝑈−1

= 𝑈𝑒𝐵𝑈−1.

b. Since 𝐴 is real and symmetric, 𝐴 = 𝑈Λ𝑈𝑇
for 𝑈 ∈ R𝑛×𝑛 orthogonal and Λ ∈ R𝑛×𝑛

diagonal. Hence 𝑒𝐴 = 𝑈𝑒Λ𝑈𝑇
and so 𝑣𝑇 𝑒𝐴𝑣 = (𝑈𝑇𝑣)𝑇 𝑒Λ𝑈𝑇𝑣 > 0, since 𝑒Λ is a

diagonal matrix with diagonal entries 𝑒Λ𝑖𝑖 > 0.

c. Since 𝐴 and 𝐵 commute, we have the binomial expansion

(𝐴 + 𝐵)𝑛 =

𝑛∑
𝑟=0

(
𝑛

𝑟

)
𝐴𝑟𝐵𝑛−𝑟 .

Hence

𝑒𝐴+𝐵 =

∞∑
𝑛=0

1

𝑛!

(𝐴 + 𝐵)𝑛

=

∞∑
𝑛=0

𝑛∑
𝑟=0

1

𝑛!

(
𝑛

𝑟

)
𝐴𝑟𝐵𝑛−𝑟

=

∞∑
𝑛=0

𝑛∑
𝑟=0

1

𝑟!(𝑛 − 𝑟)!𝐴
𝑟𝐵𝑛−𝑟

=

∞∑
𝑚,𝑘=0

1

𝑚!𝑘!
𝐴𝑚𝐵𝑘

= 𝑒𝐴𝑒𝐵 ,

where the penultimate equality follows because (𝑚, 𝑘) = (𝑟, 𝑛 − 𝑟) if and only if

𝑟 = 𝑚 and 𝑛 = 𝑚 + 𝑘.
d.

𝑑

𝑑𝑡
𝑒 𝑡𝐴 =

𝑑

𝑑𝑡

(
𝐼 + 𝑡𝐴 + 1

2

𝑡2𝐴2 + 1

6

𝑡3𝐴3 + · · ·
)

= 𝐴 + 𝑡𝐴2 + 1

2

𝑡2𝐴3 + · · ·

= 𝐴𝑒 𝑡𝐴.

e. As in (b), 𝑒𝐴 = 𝑈𝑒Λ𝑈𝑇
and hence

max

𝑥∈R𝑛\{0}

∥𝑒𝐴𝑥∥2

∥𝑥∥2

= max

𝑥∈R𝑛\{0}

∥𝑈𝑒Λ𝑥∥2

∥𝑈𝑥∥2

= max

𝑥∈R𝑛\{0}

∥𝑒Λ𝑥∥2

∥𝑥∥2

= max

𝑖
𝑒Λ𝑖𝑖

where we have used that ∥𝑈𝑥∥2 = ∥𝑥∥2 since𝑈 is orthogonal.

f. It is easy to check by induction that 𝐴𝑛 is self-adjoint for all 𝑛, and hence

⟨𝑒𝐴𝑢, 𝑣⟩𝐻 =

∞∑
𝑛=0

1

𝑛!

⟨𝐴𝑛𝑢, 𝑣⟩𝐻 =

∞∑
𝑛=0

1

𝑛!

⟨𝑢, 𝐴𝑛𝑣⟩𝐻 = ⟨𝑢, 𝑒𝐴𝑣⟩𝐻 .

□
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Note. Symmetry is important for (b). Let

𝐴 =

(
0 −𝜋
𝜋 0

)
= 𝑈

(
𝑖𝜋 0

0 −𝑖𝜋

)
𝑈−1.

Therefore

𝑒𝐴 = 𝑈

(
𝑒 𝑖𝜋 0

0 𝑒−𝑖𝜋

)
𝑈−1 = 𝑈(−𝐼)𝑈−1 = −𝐼

is negative definite. Commutativity is important for (c). Let

𝐴 =

(
1 0

0 0

)
and 𝐵 =

(
1 0

1 0

)
.

Then if we ask Matlab to compute these:

𝑒𝐴+𝐵 =

(
𝑒2

0

1

2
(𝑒2 − 1) 1

)
but

𝑒𝐴𝑒𝐵 =

(
𝑒2

0

𝑒 − 1 1

)
and 𝑒𝐵𝑒𝐴 =

(
𝑒2

0

𝑒(𝑒 − 1) 1

)
.

Definition 2.5.1 (Graph diffusion). From the graph Laplacian, we can define the graph

diffusion operator

𝑒−𝑡ℒ
(𝑟,𝑠)
𝑢 :=

∞∑
𝑛=0

(−1)𝑛𝑡𝑛
𝑛!

(
ℒ(𝑟,𝑠)

)𝑛
𝑢.

Then 𝑣(𝑡) := 𝑒−𝑡ℒ
(𝑟,𝑠)
𝑢 is the unique solution to the diffusion equation

𝑑𝑣

𝑑𝑡
= −ℒ(𝑟,𝑠)𝑣(𝑡), 𝑣(0) = 𝑢.

Exercise 5. Prove this.

2.5.1 The random walk on a graph

Definition 2.5.2 (Random walk). A random walk is a process by which a particle (a
“random walker”) moves through some set of locations by randomly jumping from location
to location according to some rule.

There is a natural random walk on a weighted graph, defined by the rule: if the
walker is at vertex 𝑖 at step 𝑛, then it jumps to vertex 𝑗 at step 𝑛 + 1 with probability
𝜔𝑖 𝑗/𝑑𝑖 . The stationary distribution 𝜋 of a random walk on 𝑉 is defined such that: 𝜋𝑖 ≥ 0

for all 𝑖 ∈ 𝑉 , ∑
𝑖∈𝑉

𝜋𝑖 = 1,

and if for all 𝑖 ∈ 𝑉 there are 𝑘 random walkers with 𝑘𝜋𝑖 walkers on vertex 𝑖 at step 𝑛,

then for all 𝑖 ∈ 𝑉 :

E[# of walkers at vertex 𝑖 at step 𝑛 + 1] = 𝑘𝜋𝑖 .
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Proposition 2.5.2. For the above defined random walk,

𝜋𝑖 =
𝑑𝑖∑
𝑗∈𝑉 𝑑 𝑗

.

Proof. It is easy to see that 𝜋𝑖 ≥ 0 and that

∑
𝑖 𝜋𝑖 = 1. Let 𝑊𝑖 ,𝑛 denote the number of

walkers at vertex 𝑖 at step 𝑛 and let𝑊𝑖 ,𝑛 = 𝑘𝑑𝑖/
∑
𝑗 𝑑 𝑗 . Then

E[𝑊𝑖 ,𝑛+1] =
∑
𝑗∈𝑉

𝑊𝑗 ,𝑛︸︷︷︸
walkers at 𝑗

𝜔 𝑗𝑖

𝑑 𝑗︸︷︷︸
P(a walker at 𝑗 jumps to 𝑖)

=
∑
𝑗∈𝑉

𝑘𝑑 𝑗∑
ℓ∈𝑉 𝑑ℓ

𝜔 𝑗𝑖

𝑑 𝑗

=
∑
𝑗∈𝑉

𝑘𝜔𝑖 𝑗∑
ℓ∈𝑉 𝑑ℓ

=
𝑘𝑑𝑖∑
ℓ∈𝑉 𝑑ℓ

= 𝑘𝜋𝑖 .

□

2.5.2 The random walk perspective on graph diffusion
For 𝑢 ∈ 𝒱 with 𝑢𝑖 ≥ 0 for all 𝑖 ∈ 𝑉 , and (𝑟, 𝑠) = (1, 0), there is a particularly neat random
walk perspective on graph diffusion. Suppose that at time 𝑡 = 0 and at each vertex 𝑖 ∈ 𝑉 ,

we place 𝑢𝑖𝑑𝑖 𝑘 random walkers, where 𝑘 ≫ 1 is any natural number. At each time step

(of length 𝛿𝑡), each random walker either stays put with probability 1 − 𝛿𝑡, or moves to

some vertex 𝑗 ∈ 𝑉 with probability 𝛿𝑡𝜔𝑖 𝑗/𝑑𝑖 . Let 𝑅𝑖(𝑡) denote the number of red walkers

at vertex 𝑖 ∈ 𝑉 at time 𝑡 ∈ 𝛿𝑡N. Then 𝑅𝑖(0) = 𝑢𝑖𝑑𝑖 𝑘 and

E[𝑅𝑖(𝑡 + 𝛿𝑡)] = E[𝑅𝑖(𝑡)] − 𝛿𝑡E[𝑅𝑖(𝑡)]︸      ︷︷      ︸
walkers leaving

+ 𝛿𝑡
∑
𝑗∈𝑉

𝜔 𝑗𝑖

𝑑 𝑗
E[𝑅 𝑗(𝑡)]︸                 ︷︷                 ︸

walkers arriving

. (2.3)

Let 𝑅̃𝑖(𝑡) := 𝑅𝑖(𝑡)/𝑑𝑖 𝑘. Then by rearranging (2.3) and dividing through by 𝛿𝑡𝑑𝑖 𝑘:

E[𝑅̃𝑖(𝑡 + 𝛿𝑡)] − E[𝑅̃𝑖(𝑡)]
𝛿𝑡

= −E[𝑅̃𝑖(𝑡)] +
1

𝑑𝑖

∑
𝑗∈𝑉

𝜔𝑖 𝑗E[𝑅̃ 𝑗(𝑡)].

Let 𝑣𝑖(𝑡) := E[𝑅̃𝑖(𝑡)]. Then 𝑣𝑖(0) = 𝑢𝑖 for all 𝑖 ∈ 𝑉 , and

𝑣𝑖(𝑡 + 𝛿𝑡) − 𝑣𝑖(𝑡)
𝛿𝑡

= −𝑣𝑖(𝑡) +
∑
𝑗∈𝑉

𝜔𝑖 𝑗

𝑑𝑖
𝑣 𝑗(𝑡) = −(ℒ(1,0)𝑣(𝑡))𝑖 .

Taking 𝛿𝑡 → 0, we recover the diffusion equation

𝑑𝑣

𝑑𝑡
= −ℒ(1,0)𝑣(𝑡), 𝑣(0) = 𝑢.

Note that as 𝑘 → ∞, 𝑅̃𝑖(𝑡) → 𝑣𝑖(𝑡) a.s. by the strong law of large numbers.
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2.6 Graph cuts
A major approach to thinking about graph clustering comes from the following idea: if

the weights 𝜔𝑖 𝑗 are supposed to describe the similarity of 𝑖 and 𝑗, then the clusters we

seek should be very similar within themselves and very dissimilar to each other. One way

to make this quantitative is via graph cuts.

Definition 2.6.1 (Graph cuts). For 𝑆 ⊆ 𝑣, the of 𝑆 is defined by

Cut(𝑆, 𝑆𝑐) :=
∑
𝑖∈𝑆

∑
𝑗∈𝑆𝑐

𝜔𝑖 𝑗 .

However, this is trivially minimised by 𝑆 = ∅ or 𝑆 = 𝑉 . Even excluding such trivial
minimisers, minimising Cut encourages either 𝑆 or 𝑆𝑐 to be very small. Therefore, there has
been interest in various modifications to the cut functional, e.g.

CheegerCut(𝑆) :=
Cut(𝑆, 𝑆𝑐)

min{|𝑆 |, |𝑆𝑐 |} , RatioCut(𝑆) :=
Cut(𝑆, 𝑆𝑐)

|𝑆 | + Cut(𝑆, 𝑆𝑐)
|𝑆𝑐 | .

We can relate these cuts to the analysis notions from the previous lecture by defining a

graph total variation.

Definition 2.6.2 (Graph total variation). For 𝑢 ∈ 𝒱, we define the graph total variation

of 𝑢 by

TV𝐺(𝑢) :=
1

2

∑
𝑖 , 𝑗∈𝑉

𝜔𝑖 𝑗 |(∇𝑢)𝑖 𝑗 | =
1

2

∑
𝑖 , 𝑗∈𝑉

𝜔𝑖 𝑗 |𝑢𝑗 − 𝑢𝑖 |.

Note. This total variation can also be written in a variational way akin to the continuum

definition of total variation. That is

TV𝐺(𝑢) = ⟨sgn(∇𝑢),∇𝑢⟩ℰ
= max{⟨𝜑,∇𝑢⟩ℰ | 𝜑 ∈ ℰ and for all 𝑖 , 𝑗 ∈ 𝑉, |𝜑𝑖 𝑗 | ≤ 1}
= max{−⟨div 𝜑, 𝑢⟩𝒱 ,0 | 𝜑 ∈ ℰ and for all 𝑖 , 𝑗 ∈ 𝑉, |𝜑𝑖 𝑗 | ≤ 1},

where the last line follows by Proposition 2.2.1.

Theorem 2.6.1. For 𝑆 ⊆ 𝑉 , the total variation of the indicator function 𝜒𝑆 coincides

with the graph cut of 𝑆, i.e.

TV𝐺(𝜒𝑆) =
1

2

Cut(𝑆, 𝑆𝑐).

Furthermore, it coincides with the graph Dirichlet energy of 𝜒𝑆, i.e.

TV𝐺(𝜒𝑆) =
1

2

∑
𝑖 , 𝑗∈𝑉

𝜔𝑖 𝑗((𝜒𝑆)𝑖 − (𝜒𝑆)𝑗)2 = | |∇𝜒𝑆 | |2ℰ = ⟨𝜒𝑆 ,ℒ(0,0)𝜒𝑆⟩𝒱 ,0.

Proof. The relation to Cut is immediate from the definition. For the latter, observe that

|(𝜒𝑆)𝑖 − (𝜒𝑆)𝑗 | = ((𝜒𝑆)𝑖 − (𝜒𝑆)𝑗)2 since 𝜒𝑆 only takes values in {0, 1}. The final equality

was Exercise 2. □
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Theorem 2.6.2. Let 𝐵(𝑢) := min𝑐
∑
𝑖∈𝑉 |𝑢𝑖 − 𝑐 |. Observe that 𝐵(𝜒𝑆) = min{|𝑆 |, |𝑆 |𝑐}.

Then

min

𝑢∈𝒱

TV𝐺(𝑢)
𝐵(𝑢)

is minimised by 𝑢 = 𝜒𝑆, where

𝑆 ∈ arg min

𝑆⊆𝑉
CheegerCut(𝑆).

Proof. Beyond the scope of this course. □
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Chapter 3

Some graph clustering and
classification methods

In this chapter, we will look at a graph clustering method and a graph classification

method, both of which became popular in the early 2000s (the younger reader may

therefore call these methods “classical"—the older reader may resist this suggestion).

3.1 Spectral clustering
Spectral clustering is a method with a long history, dating back to [Che69], but only

became popular as a machine learning method in the early 2000s with [SM00, NJW01]

and especially with von Luxburg’s ‘tutorial’ [VL07]. The idea of spectral clustering is to

use the graph Laplacian to perform a non-linear dimensionality reduction, in order to

cluster data which may have complicated geometric patterns.

Let𝑉 = {1, ..., 𝑁} and suppose we have data points 𝑥 : 𝑉 → R𝑑, where 𝑑 may be very

large. The goal of a clustering algorithm is then to sort these 𝑁 feature vectors into, say,

𝐾 clusters. Often, it turns out that the data points are close to a sub-manifold with much

smaller dimension. This suggests the two-step procedure:

1. Reduce the data 𝑥 to the lower-dimensional data F(𝑥) : 𝑉 → R𝐾 .

2. Cluster the F(𝑥) (e.g., by 𝐾-means).

For a well-chosen F, the clusters can then be found with a simple clustering algorithm

in the second step. The idea of spectral clustering is to use the low-lying eigenvectors of

the graph Laplacian on the graph built upon this data (see Chapter 6) to define F. Let

𝜉(𝑘) ∈ 𝒱 be the eigenvectors of ℒ(𝑟,𝑠)
in increasing order of eigenvalue, and define

F(𝑥) : 𝑖 ↦→
(
𝜉(1)
𝑖
, ..., 𝜉(𝐾)

𝑖

)𝑇
∈ R𝐾 .

In order to develop an intuition why this is a useful choice, consider the case of 𝐾 perfect

clusters. That is, the graph built on the data has 𝐾 disconnected components. Then, by

Theorem 2.4.1, 𝜉(𝑘) = 𝐷𝑠𝜒𝑆𝑘 where the 𝑆𝑘 ⊂ 𝑉 are the clusters, and hence each (F(𝑥))𝑖
lies on the axis corresponding to the cluster which 𝑖 belongs to. Then the F(𝑥) are very

easy to cluster.

For real data sets, we generally do not have perfectly disconnected components of

course. However, if the data is clustered in roughly 𝐾 groups, we would expect that the

first 𝐾 eigenvalues are close to zero with a spectral gap between 𝜆(𝐾)
and 𝜆(𝐾+1)

, with the

29
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eigenvectors still approximately indicating the location of the clusters. This is visualised

in Figures 2.4 and 2.5, of which the latter somewhat dramatically shows the impact of

normalisation.

The immense success of spectral clustering lies in its flexibility to deal with data

of various shapes and complicated geometries. Despite its enormous popularity and

success, our theoretical understanding of the performance of spectral clustering is still

rather vague. While there is vast empirical evidence of clustering examples in which

e.g. spectral clustering by far outperforms k-means, there exists little rigorous theoretical

analysis—even for very simple cases—that would prove the superiority of spectral clus-

tering, partly due to the two-step procedure which complicates its theoretical analysis.

For recent work, see [GTHH21,GBT21,HHOS22].

3.2 Laplace learning
Laplace learning, introduced in [ZGL03], is a method which uses the graph Laplacian ℒ
to propagate some a priori labels 𝑓 : 𝑍 → {0, 1} on a (typically, very small) subset 𝑍 of

𝑉 . Extend 𝑓 to a function on 𝑉 taking the value 0 on 𝑉 \ 𝑍. The fundamental idea is to

solve the following minimisation problem:

arg min

𝑢∈𝒱
ℰ(𝑢) :=

1

4

∑
𝑖 , 𝑗∈𝑉

𝜔𝑖 𝑗

(
𝑢𝑖

𝑑𝑠
𝑖

−
𝑢𝑗

𝑑𝑠
𝑗

)
2

s.t. 𝑢 |𝑍 = 𝑓 . (3.1)

That is, we want to encourage similar vertices (i.e., those with a high 𝜔𝑖 𝑗 on the edge

between them) to be given the same label by 𝑢, but also enforce that 𝑢 agrees with our a
priori labels 𝑓 .

Theorem 3.2.1. 𝑢 ∈ 𝒱 solves (3.1) if and only if

ℒ(𝑟,𝑠)𝑢 = 0, on 𝑉 \ 𝑍,

𝑢 = 𝑓 , on 𝑍.

(3.2)

Proof. First, recall from Exercise 2 that

ℰ(𝑢) = 1

2

⟨𝑢,ℒ(𝑟,𝑠)𝑢⟩𝒱 ,𝑟−𝑠 .

Then for 𝑢 |𝑍 = 𝑓

𝑢 solves (3.1) iff ∀𝑣 s.t. 𝑣 |𝑍 = 𝑓 , ℰ(𝑢) ≤ ℰ(𝑣)
iff ∀𝑣 s.t. 𝑣 |𝑍 = 𝑓 , 0 ≤ ⟨𝑣 − 𝑢,ℒ(𝑟,𝑠)(𝑢 + 𝑣)⟩𝒱 ,𝑟−𝑠

iff ∀𝑣 s.t. 𝑣 |𝑍 = 𝑓 , 0 ≤ ⟨𝑣 − 𝑢,ℒ(𝑟,𝑠)(𝑣 − 𝑢)⟩𝒱 ,𝑟−𝑠 + 2⟨𝑣 − 𝑢,ℒ(𝑟,𝑠)𝑢⟩𝒱 ,𝑟−𝑠

Hence if ℒ(𝑟,𝑠)𝑢 = 0 on 𝑉 \ 𝑍 then 𝑢 solves (3.1). If (ℒ(𝑟,𝑠)𝑢)𝑖 ≠ 0 for some 𝑖 ∈ 𝑉 \ 𝑍 then

let 𝑣 = 𝑢 + 𝑡𝜒{𝑖}. It follows that 𝑣 |𝑍 = 𝑓 and

⟨𝑣−𝑢,ℒ(𝑟,𝑠)(𝑣−𝑢)⟩𝒱 ,𝑟−𝑠+2⟨𝑣−𝑢,ℒ(𝑟,𝑠)𝑢⟩𝒱 ,𝑟−𝑠 = 𝑡
2⟨𝜒{𝑖} ,ℒ(𝑟,𝑠)𝜒{𝑖}⟩𝒱 ,𝑟−𝑠+2𝑡𝑑𝑟−𝑠𝑖 (ℒ(𝑟,𝑠)𝑢)𝑖 < 0

for sufficiently small 𝑡 of opposite sign to (ℒ(𝑟,𝑠)𝑢)𝑖 , and hence 𝑢 does not solve (3.1). □

One way of looking at (3.2) is that the desired 𝑢 is a harmonic extension of the labels 𝑓 .
Finally, given 𝑢 solving (3.1), we threshold 𝑢 to assign labels to all of 𝑉 .
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3.2.1 Random walk formulation
Let 𝑖 ∈ 𝑉 and consider the random walk (already introduced in Section 2.5.1):

𝑋 𝑖
0
, 𝑋 𝑖

1
, 𝑋 𝑖

2
, ...

defined by 𝑋 𝑖
0
= 𝑖 and

P(𝑋 𝑖
𝑛+1

= 𝑗 |𝑋 𝑖
𝑛 = 𝑘) =

𝜔 𝑗𝑘

𝑑𝑘
=: 𝑃𝑘 𝑗 .

Note that 𝑃 = 𝐼 − ℒ(1,0)
. Let

𝜏𝑖 := inf{𝑛 ≥ 0|𝑋 𝑖
𝑛 ∈ 𝑍},

this is called the hitting time of 𝑍 from 𝑖.

Theorem 3.2.2. Let 𝑠 = 0 and let 𝑢 solve (3.2). Then for all 𝑖 ∈ 𝑉

𝑢𝑖 = E[ 𝑓𝑋 𝑖
𝜏𝑖
].

Proof (sketch). This is a consequence of Doob’s optional stopping theorem. □

That is, Laplace learning can be understood as putting a bunch of random walkers

on a vertex 𝑖, letting those walkers walk until they hit a labelled vertex, and then giving

𝑖 the label those walkers hit most frequently.

3.3 Poisson learning
Unfortunately, for 𝑍 very small relative to 𝑉 , Laplace learning degenerates, giving 𝑢 ≈ 𝑐
for some constant 𝑐 on almost all of the vertices in 𝑉 \ 𝑍. This phenomenon is explained

by the following exercise.

Exercise 6. Show that for 𝑍 sufficiently small, the mixing time for the random walk is

smaller than the hitting time of 𝑍 from 𝑖, for most 𝑖 ∈ 𝑉 \ 𝑍. Show that therefore

𝑐 = ⟨ 𝑓 , 𝜒𝑍⟩𝒱 ,1/⟨𝜒𝑍 , 𝜒𝑍⟩𝒱 ,1.

In [CCTS20], a new method was proposed to avoid this issue, called Poisson learning.

We modify this method slightly to fit it into our more general framework. Define

𝑓 (𝑟,𝑠) :=
⟨ 𝑓 , 𝐷𝑠𝜒𝑍⟩𝒱 ,𝑟−𝑠
⟨𝜒𝑍 , 𝐷𝑠𝜒𝑍⟩𝒱 ,𝑟−𝑠

,

the “average label”. Note that 𝑓 (𝑟,𝑠) = 𝑓 (𝑟,0). Then consider the Poisson equation:

ℒ(𝑟,𝑠)𝑢 = 𝑓 − 𝑓 (𝑟,𝑠)𝜒𝑍 , ⟨𝑢, 𝐷𝑠1⟩𝒱 ,𝑟−𝑠 = 0. (3.3)

Theorem 3.3.1. Let 𝐺 be a connected graph. Then there exists a unique solution to

(3.3).

Proof. Note that ⟨ 𝑓 − 𝑓 (𝑟,𝑠)𝜒𝑍 , 𝐷𝑠1⟩𝒱 ,𝑟−𝑠 = 0, and that, by connectedness, 𝐷𝑠1 is the only

eigenvector of ℒ(𝑟,𝑠)
with a zero eigenvalue. Hence

𝑢∗ :=

𝑁∑
𝑘=2

1

𝜆(𝑘) ⟨ 𝑓 − 𝑓 (𝑟,𝑠)𝜒𝑍 , 𝜉
(𝑘)⟩𝒱 ,𝑟−𝑠𝜉

(𝑘)

solves ℒ(𝑟,𝑠)𝑢∗ = 𝑓 − 𝑓 (𝑟,𝑠)𝜒𝑍 . Finally, if ℒ(𝑟,𝑠)𝑢 = 𝑓 − 𝑓 (𝑟,𝑠)𝜒𝑍 then ℒ(𝑟,𝑠)(𝑢 − 𝑢∗) = 0 and

hence 𝑢 − 𝑢∗ ∝ 𝐷𝑠1, so if ⟨𝑢, 𝐷𝑠1⟩𝒱 ,𝑟−𝑠 = 0 then 𝑢 = 𝑢∗. □
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Theorem 3.3.2. Let 𝐺 be a connected graph. Then 𝑢 solves (3.3) if and only if 𝑢
solves

arg min

𝑢∈𝒱
ℰ(𝑢) − ⟨𝑢, 𝑓 − 𝑓 (𝑟,𝑠)𝜒𝑍⟩𝒱 ,𝑟−𝑠 s.t. ⟨𝑢, 𝐷𝑠1⟩𝒱 ,𝑟−𝑠 = 0. (3.4)

Proof. By Exercise 2, 𝑢 minimises (3.4) if and only if 𝑢 minimises

⟨𝑢,ℒ(𝑟,𝑠)𝑢 − 2( 𝑓 − 𝑓 (𝑟,𝑠)𝜒𝑍)⟩𝒱 ,𝑟−𝑠 ,

if and only if 𝑢 minimises

⟨𝑢 − 𝑢∗ ,ℒ(𝑟,𝑠)(𝑢 − 𝑢∗)⟩𝒱 ,𝑟−𝑠 ,

if and only if 𝑢 = 𝑢∗, since 𝐺 is connected and ⟨𝑢, 𝐷𝑠1⟩𝒱 ,𝑟−𝑠 = 0 = ⟨𝑢∗ , 𝐷𝑠1⟩𝒱 ,𝑟−𝑠 , where

𝑢∗ is the unique solution to (3.3) defined in the previous theorem. □

In [CCTS20], it was shown that this method is much more effective than Laplace

learning when there are very few labels 𝑍.

3.3.1 Random walk formulation
We can derive Poisson learning from a random walk formulation in the (𝑟, 𝑠) = (1, 0)
case. Instead of having walkers walk until they hit a label, as in Laplace learning, instead

we have walkers begin at the labelled nodes. Define

(𝑤𝑇)𝑖 :=

𝑇∑
𝑡=0

∑
𝑗∈𝑍

𝑑 𝑗 𝑓𝑗P(𝑋 𝑗

𝑡 = 𝑖).

What this keeps track of is as follows: imagine that we have walkers who begin at each

labelled node 𝑗 ∈ 𝑍, and carry with them a contribution 𝑑 𝑗 𝑓𝑗 , which they confer to each

vertex they encounter. Then (𝑤𝑇)𝑖 records the expected total contribution conferred to

vertex 𝑖 after 𝑇 steps of the walk.

As 𝑡 → ∞,

P(𝑋 𝑗

𝑡 = 𝑖) → 𝑑𝑖∑
𝑘 𝑑𝑘

=: 𝜋𝑖

and hence for large 𝑡,∑
𝑗∈𝑍

𝑑 𝑗 𝑓𝑗P(𝑋 𝑗

𝑡 = 𝑖) ≈ 𝑑𝑖∑
𝑘 𝑑𝑘

∑
𝑗∈𝑍

𝑑 𝑗 𝑓𝑗 =
𝑑𝑖∑
𝑘 𝑑𝑘

∑
𝑗∈𝑍

𝑑 𝑗 𝑓
(1,0) ≈

∑
𝑗∈𝑍

𝑑 𝑗 𝑓
(1,0)P(𝑋 𝑗

𝑡 = 𝑖).

This long-time behaviour is undesirable, as it corresponds to when our starting location

has been ‘forgotten’ by the random walk. We therefore subtract it off, and define

(𝑢𝑇)𝑖 :=
1

𝑑𝑖

𝑇∑
𝑡=0

∑
𝑗∈𝑍

𝑑 𝑗( 𝑓𝑗 − 𝑓 (1,0))P(𝑋 𝑗

𝑡 = 𝑖)

Theorem 3.3.3. For all 𝑇 ≥ 0,

(𝑢𝑇+1)𝑖 = (𝑢𝑇)𝑖 − (ℒ(1,0)𝑢𝑇)𝑖 + 𝑓 − 𝑓 (1,0)𝜒𝑍

If the graph is connected and every eigenvalue of 𝑃 (except for the 1 eigenvalue
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corresponding to 𝑃1 = 1) lies in (−1, 1), then 𝑢𝑇 → 𝑢 as 𝑇 → ∞ where 𝑢 solves (3.3)

with (𝑟, 𝑠) = (1, 0).
Proof. Let

(𝐺𝑇)𝑖 𝑗 :=
1

𝑑𝑖

𝑇∑
𝑡=0

P(𝑋 𝑗

𝑡 = 𝑖).

Then

𝑑𝑖(𝐺𝑇)𝑖 𝑗 = 𝛿𝑖 𝑗 +
𝑇−1∑
𝑡=0

P(𝑋 𝑗

𝑡+1
= 𝑖)

= 𝛿𝑖 𝑗 +
𝑇−1∑
𝑡=0

∑
𝑘∈𝑉

𝜔𝑖𝑘

𝑑𝑘
P(𝑋 𝑗

𝑡 = 𝑘) (by the definition of the random walk)

= 𝛿𝑖 𝑗 +
∑
𝑘∈𝑉

𝜔𝑖𝑘(𝐺𝑇−1)𝑘 𝑗 .

That is, recalling that ℒ(1,0)
:= 𝐼 − 𝐷−1𝜔,

𝐺𝑇 = 𝐷−1(𝐼 + 𝜔𝐺𝑇−1) = 𝐷−1 + 𝐺𝑇−1 − ℒ(1,0)𝐺𝑇−1.

Then

𝑢𝑇+1 = 𝐺𝑇+1𝐷( 𝑓 − 𝑓 (1,0)𝜒𝑍)
= 𝐷−1𝐷( 𝑓 − 𝑓 (1,0)𝜒𝑍) + 𝐺𝑇𝐷( 𝑓 − 𝑓 (1,0)𝜒𝑍) − ℒ(1,0)𝐺𝑇𝐷( 𝑓 − 𝑓 (1,0)𝜒𝑍)
= 𝑢𝑇 − ℒ(1,0)𝑢𝑇 + 𝑓 − 𝑓 (1,0)𝜒𝑍 ,

as desired.

Now, let 𝑢 ∈ 𝒱 be the unique solution to

ℒ(1,0)𝑢 = 𝑓 − 𝑓 (1,0)𝜒𝑍

with ⟨𝑢, 1⟩𝒱 ,1 = 0. Then defining 𝛿𝑢𝑇 := 𝑢𝑇 − 𝑢 we get that

𝛿𝑢𝑇+1 = 𝑢𝑇 − 𝑢 − ℒ(1,0)𝑢𝑇 + 𝑣 = 𝛿𝑢𝑇 − ℒ(1,0)𝛿𝑢𝑇 = 𝑃𝛿𝑢𝑇 .

Hence, by the assumption on the eigenvalues of 𝑃, as 𝑇 → ∞,

𝛿𝑢𝑇 → ⟨𝛿𝑢0 , 1⟩𝒱 ,1

⟨1, 1⟩𝒱 ,1
1 =

⟨𝑢0 , 1⟩𝒱 ,1

⟨1, 1⟩𝒱 ,1
1 = 0,

since

⟨𝑢0 , 1⟩𝒱 ,1 =
∑
𝑖∈𝑉

∑
𝑗∈𝑍

𝑑 𝑗( 𝑓𝑗 − 𝑓 (1,0))P(𝑋 𝑗

𝑡 = 𝑖) =
∑
𝑗∈𝑍

𝑑 𝑗( 𝑓𝑗 − 𝑓 (1,0)) = 0.

Hence 𝑢𝑇 → 𝑢 with 𝑢 solving (3.3), as desired. □
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Chapter 4

The Allen–Cahn equation and
MBO scheme on graphs

4.1 Allen–Cahn and MBO

4.1.1 Ginzburg–Landau and Total Variation functionals

Definition 4.1.1 (Graph Ginzburg–Landau functional). Let 𝑢 ∈ 𝒱, and let𝑊 : R→ R
be a continuous double well potential with wells at 0 and 1. That is, 𝑊(𝑥) ≥ 0 for all
𝑥 ∈ R and 𝑊(0) = 𝑊(1) = 0. Then the graph Ginzburg–Landau functional is defined
(for parameter 𝜀 > 0) by:

GL𝜀(𝑢) :=
1

2

∥∇𝑢∥2

ℰ + 1

𝜀

∑
𝑖∈𝑉

𝑊(𝑢𝑖).

This can be related to the graph cut (i.e., total variation) via a special type of conver-

gence. For a given subset of vertices 𝑆 ⊂ 𝑉 , define the indicator function 𝜒𝑆 : 𝑉 → {0, 1}
on 𝑆 by

𝜒𝑆(𝑖) =
{

1 , if 𝑖 ∈ 𝑆 ,
0 , if 𝑖 ∉ 𝑆 .

Then we relate GL𝜀 to TV𝐺.

Theorem 4.1.1 (See [vGB18, Theorem 3.1]). Define the following functional on 𝒱:

TV0(𝑢) :=

{
1

2
TV𝐺(𝜒𝑆), if 𝑢 = 𝜒𝑆 for some 𝑆 ⊆ 𝑉,

∞, otherwise.

Then as 𝜀 → 0, GL𝜀 Γ-converges to TV0.

Note. For a definition of Γ-convergence, see [Bra07, Definitions 1.5 and 1.45]. For our

purposes, all that matters here is that this result means that minimisers of GL𝜀 converge

to minimisers of TV0, and the latter are what we thought of as good clusterings.

4.1.2 Graph Ginzburg–Landau and Allen–Cahn
As we just saw, the graph Ginzburg–Landau functional is a relaxation of the graph cut,

and is therefore a natural energy for binary clustering.

35
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In the finale of this course, our focus will be on binary classification, where we have an

additional a priori segmentation 𝑓 : 𝑍 → {0, 1}. We will therefore generalise this energy

to include fidelity forcing to 𝑓 , and also introduce some further pieces to incorporate

different Laplacians.

Definition 4.1.2 (Graph Ginzburg–Landau functional with fidelity). The graph

Ginzburg–Landau functional with fidelity is given by:

GL
(𝑟,𝑠)
𝜀,𝜇, 𝑓 (𝑢) :=

1

2

∥∇(𝐷−𝑠𝑢)∥2

ℰ + 1

𝜀
⟨𝑊 ◦ 𝑢, 1⟩𝒱 ,𝑟−𝑠 +

1

2

⟨𝑢 − 𝑓 , 𝑀(𝑢 − 𝑓 )⟩𝒱 ,𝑟−𝑠 ,

where 𝑀 := diag(𝜇) for 𝜇 ∈ 𝒱[0,∞) the fidelity parameter with 𝑍 = supp(𝜇).

Note that 𝜇𝑖 paramaterises the strength of the fidelity to the reference at vertex 𝑖. We

have here extended 𝑓 to be zero on 𝑉 \ 𝑍. We will suppress parameters when they are

clear from context.

Theorem 4.1.2. This Ginzburg–Landau functional has the following first variation:

GL
(𝑟,𝑠)
𝜀,𝜇, 𝑓 (𝑢 + 𝛿𝑢) = GL

(𝑟,𝑠)
𝜀,𝜇, 𝑓 (𝑢) +

〈
ℒ(𝑟,𝑠)𝑢 + 1

𝜀
𝑊 ′ ◦ 𝑢 +𝑀(𝑢 − 𝑓 ), 𝛿𝑢

〉
𝒱 ,𝑟−𝑠

+ 𝑜(𝛿𝑢)

Proof. We first recall an important lemma (shown in Lecture 2, Exercise 1):

∥∇𝑣∥2

ℰ = ⟨𝑣,ℒ(0,0)𝑣⟩𝒱 ,0.

Given this lemma, it follows that

∥∇(𝐷−𝑠𝑢)∥2

ℰ = ⟨𝐷−𝑠𝑢,ℒ(0,0)𝐷−𝑠𝑢⟩𝒱 ,0

= ⟨𝑢, 𝐷−𝑠ℒ(0,0)𝐷−𝑠𝑢⟩𝒱 ,0

= ⟨𝑢, 𝐷−(𝑟−𝑠)𝐷−𝑠ℒ(0,0)𝐷−𝑠𝑢⟩𝒱 ,𝑟−𝑠

= ⟨𝑢,ℒ(𝑟,𝑠)𝑢⟩𝒱 ,𝑟−𝑠 .

Finally, we verify each part of the first variation separately:

1

2

⟨𝑢 + 𝛿𝑢,ℒ(𝑟,𝑠)(𝑢 + 𝛿𝑢)⟩𝒱 ,𝑟−𝑠 =
1

2

⟨𝑢,ℒ(𝑟,𝑠)𝑢⟩𝒱 ,𝑟−𝑠

+ ⟨𝛿𝑢,ℒ(𝑟,𝑠)𝑢⟩𝒱 ,𝑟−𝑠 + 𝑜(𝛿𝑢),
⟨𝑊 ◦ (𝑢 + 𝛿𝑢), 1⟩𝒱 ,𝑟−𝑠 = ⟨𝑊 ◦ 𝑢 + 𝛿𝑢 ⊙ (𝑊 ′ ◦ 𝑢) + 𝑜(𝛿𝑢), 1⟩𝒱 ,𝑟−𝑠

= ⟨𝑊 ◦ 𝑢, 1⟩𝒱 ,𝑟−𝑠 + ⟨𝛿𝑢,𝑊 ′ ◦ 𝑢⟩𝒱 ,𝑟−𝑠 + 𝑜(𝛿𝑢),
1

2

⟨𝑢 + 𝛿𝑢 − 𝑓 , 𝑀(𝑢 + 𝛿𝑢 − 𝑓 )⟩𝒱 ,𝑟−𝑠 =
1

2

⟨𝑢 − 𝑓 , 𝑀(𝑢 − 𝑓 )⟩𝒱 ,𝑟−𝑠

+ ⟨𝛿𝑢, 𝑀(𝑢 − 𝑓 )⟩𝒱 ,𝑟−𝑠 + 𝑜(𝛿𝑢).

For the first and third expression, we used that ℒ(𝑟,𝑠)
and 𝑀 are self-adjoint with respect

to ⟨·, ·⟩𝒱 ,𝑟−𝑠 . For the second expression, we used the definition of the derivative. Note

that ⊙ denotes the Hadamard (i.e., componentwise) product. □

Given these first variations, we can define the Allen–Cahn gradient flow of the Ginzburg–

Landau functional.
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Definition 4.1.3 (Graph Allen–Cahn equation with fidelity). The graph Allen–Cahn

equation with fidelity is defined to be the ODE:

𝑑𝑢

𝑑𝑡
= −ℒ(𝑟,𝑠)𝑢 − 1

𝜀
𝑊 ′ ◦ 𝑢 −𝑀(𝑢 − 𝑓 ). (4.1)

By Theorem 4.1.2, this is the gradient flow of GL
(𝑟,𝑠)
𝜀,𝜇, 𝑓 with respect to ⟨·, ·⟩𝒱 ,𝑟−𝑠 .

4.1.3 The Merriman–Bence–Osher (MBO) scheme

In Chapter 2 we defined graph diffusion. To define the graph MBO scheme, we will first

define graph diffusion with an extra fidelity forcing.

Definition 4.1.4 (Fidelity-forced graph diffusion). The fidelity-forced graph diffu-

sion of 𝑢0 ∈ 𝒱 is

𝑑𝑢

𝑑𝑡
(𝑡) = −ℒ𝑢(𝑡) −𝑀(𝑢(𝑡) − 𝑓 ), 𝑢(0) = 𝑢0. (4.2)

For 𝑡 , 𝑥 ∈ R, let 𝐹𝑡(𝑥) := (1 − 𝑒−𝑡𝑥)/𝑥, and extend 𝐹𝑡 to (real) matrix inputs via its Taylor

series. Then, for any given 𝑢0 ∈ 𝒱, (4.2) has a unique solution, given by the map:

𝑢(𝑡) = 𝒮𝑡𝑢0 := 𝑒−𝑡(ℒ+𝑀)𝑢0 + 𝐹𝑡(ℒ +𝑀)𝑀 𝑓 .

Exercise 7. Prove that this is the unique solution to (4.2).

Then the graph MBO scheme (with fidelity forcing) is defined as follows.

Definition 4.1.5 (Graph MBO scheme (with fidelity forcing)). The graph MBO

scheme defines a sequence 𝑢𝑛 ∈ 𝒱{0,1} from initial condition 𝑢0 ∈ 𝒱[0,1] by the following
diffusion-thresholding scheme with time step 𝜏 ≥ 0:

(𝑢𝑛+1)𝑖 =
{

1, if (𝒮𝜏𝑢𝑛)𝑖 ≥ 1/2,

0, if (𝒮𝜏𝑢𝑛)𝑖 < 1/2.
(4.3)

That is, 𝑢𝑛+1 is defined by evolving the forced diffusion of 𝑢𝑛 for time 𝜏, and then thresholding.

4.2 The SDIE scheme

4.2.1 The SDIE scheme and its variational form

Definition 4.2.1 (SDIE scheme for the Allen–Cahn equation). We define the following
numerical scheme for (4.1), which we call a semi-discrete implicit Euler (SDIE) scheme:

for time step 𝜏 > 0

𝑢𝑛+1 = 𝒮𝜏𝑢𝑛 −
𝜏
𝜀
𝑊 ′ ◦ 𝑢𝑛+1. (4.4)

What this is doing is diffusing 𝑢𝑛 for time 𝜏 using the solution operator for fidelity-forced

diffusion, and then taking an implicit Euler step against the potential.
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4.2.2 Convexity recall

Definition 4.2.2 (Convex function). A function 𝑓 on an interval 𝑇 ⊆ R is said to be
convex if for all 𝑥, 𝑦 ∈ 𝑇 and 𝑡 ∈ [0, 1]

𝑓 (𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡 𝑓 (𝑥) + (1 − 𝑡) 𝑓 (𝑦).

Geometrically, it always lies beneath its secant lines.

Theorem 4.2.1. Let 𝑓 : R → R be differentiable and convex. Then 𝑥 is a global

minimum of 𝑓 (i.e., 𝑓 (𝑥) ≤ 𝑓 (𝑦) for all 𝑦 ∈ R) if and only if 𝑓 ′(𝑥) = 0.

Proof. Suppose that 𝑥 is a global minimum of 𝑓 . Then for ℎ > 0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

≤ 0

and for ℎ < 0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

≥ 0,

so 𝑓 ′(𝑥) = 0. Now suppose that there exists 𝑓 (𝑦) < 𝑓 (𝑥), and let 𝛼 = 𝑓 (𝑥) − 𝑓 (𝑦) > 0.

Then for all 𝑡 ∈ [0, 1]

𝑓 (𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡 𝑓 (𝑥) + (1 − 𝑡) 𝑓 (𝑦) = 𝑓 (𝑥) − (1 − 𝑡)𝛼

Let 𝑡𝑥 + (1 − 𝑡)𝑦 = 𝑥 + ℎ, i.e. ℎ = (1 − 𝑡)(𝑦 − 𝑥). If 𝑦 > 𝑥, ℎ > 0 and

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

≤ − (1 − 𝑡)𝛼
(1 − 𝑡)(𝑦 − 𝑥) = − 𝛼

𝑦 − 𝑥

If 𝑦 < 𝑥, ℎ < 0 and

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

≥ − 𝛼
𝑦 − 𝑥 =

𝛼

|𝑦 − 𝑥 | .

In either case, taking 𝑡 → 1 and therefore ℎ → 0, we get | 𝑓 ′(𝑥)| ≥ 𝛼/|𝑦 − 𝑥 |, and so

𝑓 ′(𝑥) ≠ 0. □

4.2.3 The variational form of the SDIE scheme

Theorem 4.2.2 (Variational form of SDIE scheme). Let 𝑊 be differentiable, 𝑟′ ∈ R,

and let 𝜏, 𝜀 be such that 𝑦 ↦→ 𝜏
𝜀𝑊(𝑦) + 1

2
𝑦2

is a convex function. Then 𝑢𝑛+1 solves

(4.4) if and only if

𝑢𝑛+1 ∈ arg min

𝑢∈𝒱

𝜏
𝜀
⟨𝑊 ◦ 𝑢, 1⟩𝒱 ,𝑟′ +

1

2

∥𝑢 − 𝒮𝜏𝑢𝑛 ∥2

𝒱 ,𝑟′ . (4.5)

Proof. 𝑢𝑛+1 solves (4.5) if and only if for all 𝑖 ∈ 𝑉 ,

(𝑢𝑛+1)𝑖 ∈ arg min

𝑥∈R

𝜏
𝜀
𝑊(𝑥) + 1

2

(𝑥 − (𝒮𝜏𝑢𝑛)𝑖)2.

Since the objective function is differentiable and convex, this holds if and only if

𝜏
𝜀
𝑊 ′((𝑢𝑛+1)𝑖) + (𝑢𝑛+1)𝑖 − (𝒮𝜏𝑢𝑛)𝑖 = 0 for all 𝑖 ∈ 𝑉

by the previous theorem. This is precisely (4.4). □
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4.2.4 The variational form of the MBO scheme

Theorem 4.2.3. For all 𝑟′ ∈ R, 𝑢𝑛+1 given by (4.3) solves

𝑢𝑛+1 ∈ arg min

𝑢∈𝒱[0,1]

⟨1 − 2𝒮𝜏𝑢𝑛 , 𝑢⟩𝒱 ,𝑟′ (4.6)

which is equivalent to

𝑢𝑛+1 ∈ arg min

𝑢∈𝒱[0,1]

1

2

⟨1 − 𝑢, 𝑢⟩𝒱 ,𝑟′ +
1

2

∥𝑢 − 𝒮𝜏𝑢𝑛 ∥2

𝒱 ,𝑟′ . (4.7)

Proof. 𝑢𝑛+1 solves (4.6) if and only if for all 𝑖 ∈ 𝑉 ,

(𝑢𝑛+1)𝑖 ∈ arg min

𝑥∈[0,1]
(1 − 2(𝒮𝜏𝑢𝑛)𝑖)𝑥 =


{0}, (𝒮𝜏𝑢𝑛)𝑖 < 1

2
,

[0, 1], (𝒮𝜏𝑢𝑛)𝑖 = 1

2
,

{1}, (𝒮𝜏𝑢𝑛)𝑖 > 1

2
,

which is satisfied by 𝑢𝑛+1 given by (4.3).

Next, we rewrite the objective functional in (4.7):

1

2

⟨1 − 𝑢, 𝑢⟩𝒱 ,𝑟′ +
1

2

∥𝑢 − 𝒮𝜏𝑢𝑛 ∥2

𝒱 ,𝑟′

=
1

2

⟨1, 𝑢⟩𝒱 ,𝑟′ −
1

2

⟨𝑢, 𝑢⟩𝒱 ,𝑟′ +
1

2

⟨𝑢, 𝑢⟩𝒱 ,𝑟′ − ⟨𝑢,𝒮𝜏𝑢𝑛⟩𝒱 ,𝑟′ +
1

2

∥𝒮𝜏𝑢𝑛 ∥2

𝒱 ,𝑟′

=
1

2

⟨1 − 2𝒮𝜏𝑢𝑛 , 𝑢⟩𝒱 ,𝑟′ +
1

2

∥𝒮𝜏𝑢𝑛 ∥2

𝒱 ,𝑟′

which as the same minimisers in 𝑢 as ⟨1 − 2𝒮𝜏𝑢𝑛 , 𝑢⟩𝒱 ,𝑟′ . □

We notice that (4.5) and (4.7) are almost identical. To make them exactly identical, we

desire:

1. 𝑊 to equal
1

2
𝑥(1 − 𝑥) on [0, 1].

2. 𝑊 to force the minimisers to lie in 𝒱[0,1].
3. 𝜏 equal to 𝜀.

4.3 The double-obstacle potential, subdifferentiability, and
weak differentiability

We can satisfy all of our desiderata by making the folowing definition.

Definition 4.3.1 (Double-obstacle potential). The double-obstacle potential𝑊 : R→
[0,∞] is defined by

𝑊(𝑥) =
{

1

2
𝑥(1 − 𝑥), 𝑥 ∈ [0, 1],

∞, otherwise.

See e.g. [BE91,BKS18,OP88] for discussion of this potential.

There is just a little problem: in the above definition of the Allen–Cahn flow and SDIE

scheme, we used the derivative of𝑊 . Which this𝑊 doesn’t have at 0 and 1.

Question. How can you differentiate a function that doesn’t have a derivative?
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4.3.1 Subdifferentiability

Definition 4.3.2 (Subdifferential, see [ET99, Definition 5.1]). Let 𝑓 : 𝑇 → [0,∞] be a
convex function, where 𝑇 ⊆ R an interval. Then 𝑐 ∈ R is a subderivative of 𝑓 at 𝑥 ∈ 𝑇 if

𝑓 (𝑦) − 𝑓 (𝑥) ≥ 𝑐(𝑦 − 𝑥)

for all 𝑦 ∈ 𝑇. Geometrically, 𝑐 is the slope of a line which coincides with 𝑓 at 𝑥 and
always lies below the graph of 𝑓 . The set of such subderivatives, denoted 𝜕 𝑓 (𝑥), is called the
subdifferential of 𝑓 at 𝑥.

Example 4.3.1. Let 𝑓 (𝑥) = |𝑥 |. Let 𝑥 > 0, and we desire |𝑦 | −𝑥 ≥ 𝑐(𝑦−𝑥). Taking 𝑦 = 𝑥+1

we get 1 ≥ 𝑐. Taking 𝑦 = 𝑥/2 we get −𝑥/2 ≥ −𝑐𝑥/2 and so 𝑐 ≥ 1. Finally, 𝑐 = 1 works

because |𝑦 | ≥ 𝑦 for all 𝑦. Thus 𝜕 𝑓 (𝑥) = {1} for 𝑥 > 0. Likewise, 𝜕 𝑓 (𝑥) = {−1} for 𝑥 < 0.

Finally, for 𝑥 = 0 we get |𝑦 | ≥ 𝑐𝑦, which is true whenever 𝑐 ∈ [−1, 1].

Theorem 4.3.1. Let 𝑓 : R→ [0,∞] be a convex function.

1. If 𝑓 is differentiable at 𝑥, then 𝜕 𝑓 (𝑥) = { 𝑓 ′(𝑥)}.
2. If 𝑐1 , 𝑐2 ∈ 𝜕 𝑓 (𝑥) and 𝑐1 < 𝑐 < 𝑐2, then 𝑐 ∈ 𝜕 𝑓 (𝑥).

Exercise 8. Prove this.

Write

𝑊(𝑥) = 1

2

𝑥(1 − 𝑥) + 𝐼[0,1](𝑥)

where 𝐼[0,1] is the indicator function taking value 0 on [0, 1] and ∞ elsewhere. Then

“𝜕𝑊(𝑥)′′ = 1

2

− 𝑥 + 𝜕𝐼[0,1](𝑥)

where I have been a little loose with my definitions here, as 𝑊 is not convex, but the

above expression for𝑊 separates it into a convex function plus a differentiable function.

Proposition 4.3.2. 𝐼[0,1] is a convex function and has subdifferential:

𝜕𝐼[0,1](𝑥) =



∅, 𝑥 < 0,

(−∞, 0], 𝑥 = 0,

{0}, 0 < 𝑥 < 1,

[0,∞), 𝑥 = 1,

∅, 𝑥 > 1.

Proof. We wish to show that for all 𝑥, 𝑦 ∈ R and 𝑡 ∈ [0, 1]
𝐼[0,1](𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡𝐼[0,1](𝑥) + (1 − 𝑡)𝐼[0,1](𝑦).

If either of 𝑥, 𝑦 ∉ [0, 1], then the RHS is infinite so this is satisfied. If 𝑥, 𝑦 ∈ [0, 1] then

𝑡𝑥 + (1 − 𝑡)𝑦 ∈ [0, 1] and so 𝐿𝐻𝑆 = 𝑅𝐻𝑆 = 0. 𝜕𝐼[0,1](𝑥) = {0} for 𝑥 ∈ (0, 1) follows

by the first part of the above theorem, and 𝜕𝐼[0,1](𝑥) = ∅ for 𝑥 ∉ [0, 1] follows since

𝐼[0,1](𝑦) − 𝐼[0,1](𝑥) is either −∞ or ∞ − ∞, so is never ≥ 𝑐(𝑦 − 𝑥) for any 𝑐 ∈ R. We will

check 𝑥 = 0 (the case 𝑥 = 1 goes the same way). We seek 𝑐 ∈ R such that

𝑐𝑦 ≤ 𝐼[0,1](𝑦) =
{

0, 𝑦 ∈ [0, 1],
∞, 𝑦 ∉ [0, 1].

Taking 𝑦 = 1 we get that 𝑐 ≤ 0, which is also plainly sufficient. □
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4.3.2 Weak differentiability and the 𝐻1 space

Definition 4.3.3. Let 𝑎 < 𝑏 ∈ R and 𝑓 : (𝑎, 𝑏) → R. Then 𝑑𝑓 /𝑑𝑡 : (𝑎, 𝑏) → R is a weak

derivative of 𝑓 if it satisfies∫ 𝑏

𝑎

𝑑𝑓

𝑑𝑡
(𝑡)𝜑(𝑡) 𝑑𝑡 = −

∫ 𝑏

𝑎

𝑓 (𝑡) 𝑑𝜑
𝑑𝑡

(𝑡) 𝑑𝑡

for all infinitely differentiable 𝜑 : (𝑎, 𝑏) → R which are zero outside of some closed interval
contained in (𝑎, 𝑏). Let 𝑢 ∈ 𝒱𝑡∈(𝑎,𝑏). Then 𝑑𝑢/𝑑𝑡 ∈ 𝒱𝑡∈(𝑎,𝑏) is a weak derivative of 𝑢 if for
all 𝑖 ∈ 𝑉 , (𝑑𝑢/𝑑𝑡)𝑖 is a weak derivative of 𝑢𝑖 . We define the Sobolev space

𝐻1((𝑎, 𝑏);𝒱) := {𝑢 ∈ 𝐿2((𝑎, 𝑏);𝒱)|𝑑𝑢/𝑑𝑡 ∈ 𝐿2((𝑎, 𝑏);𝒱)}

and the local Sobolev space, for 𝑇 ⊆ R an interval,

𝐻1

𝑙𝑜𝑐
(𝑇;𝒱) := {𝑢 ∈ 𝐿2

𝑙𝑜𝑐
(𝑇;𝒱)|∀𝑎 < 𝑏 ∈ 𝑇, 𝑢 |(𝑎,𝑏) ∈ 𝐻1((𝑎, 𝑏);𝒱)}.

Sobolev spaces have a lot of theory attached to them, which I will do my best to skirt

around. See [Bre83] for details.

4.4 Double-obstacle Allen–Cahn flow

Definition 4.4.1. Let 𝑢 ∈ 𝒱. We define the set.

ℬ(𝑢) :=
{
𝛼 ∈ 𝒱

�� ∀𝑖 ∈ 𝑉, 𝛼𝑖 ∈ −𝜕𝐼[0,1](𝑢𝑖)
}

(4.8)

which is non-empty if and only if 𝑢 ∈ 𝒱[0,1]. Then 𝛽 ∈ ℬ(𝑢) if and only if for all 𝑖 ∈ 𝑉

𝛽𝑖 ∈


[0,∞), 𝑢𝑖 = 0,

{0}, 0 < 𝑢𝑖 < 1,

(−∞, 0], 𝑢𝑖 = 1.

Lemma 4.4.1. Let 𝑢 ∈ 𝒱[0,1] and 𝛽 ∈ ℬ(𝑢). Then for all 𝜂 ∈ 𝒱[0,1], ⟨𝛽, 𝜂 − 𝑢⟩𝒱 ≥ 0.

Proof. Consider 𝛽𝑖(𝜂𝑖 − 𝑢𝑖). If 𝑢𝑖 ∈ (0, 1) then 𝛽𝑖 = 0, so this term equals 0. If 𝑢𝑖 = 0

then 𝛽𝑖 ≥ 0 and 𝜂𝑖 − 𝑢𝑖 = 𝜂𝑖 ≥ 0, so the term is non-negative. If 𝑢𝑖 = 1 then 𝛽𝑖 ≤ 0 and

𝜂𝑖 − 𝑢𝑖 = 𝜂𝑖 − 1 ≤ 0, so the term is non-negative. Hence for all 𝑖 ∈ 𝑉 , 𝛽𝑖(𝜂𝑖 − 𝑢𝑖) ≥ 0. □

Definition 4.4.2 (Double-obstacle AC flow with fidelity forcing). Let 𝑇 be an interval.
Then a pair (𝑢, 𝛽) ∈ 𝐶0(𝑇;𝒱[0,1]) × 𝒱𝑡∈𝑇 is a solution to double-obstacle AC flow with
fidelity forcing on 𝑇 if 𝑢 ∈ 𝐻1

𝑙𝑜𝑐
(𝑇;𝒱) and for almost every (a.e.) 𝑡 ∈ 𝑇:

𝜀
𝑑𝑢

𝑑𝑡
(𝑡) + 𝜀ℒ𝑢(𝑡) + 𝜀𝑀(𝑢(𝑡) − 𝑓 ) + 1

2

1 − 𝑢(𝑡) = 𝛽(𝑡), 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)). (4.9)

Note. Whenever I say "a.e.", feel free to ignore it if you are unfamiliar with measure

theory and replace it with "every". It does not play a big role in understanding the

results.
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Theorem 4.4.2. If (𝑢, 𝛽) obeys Definition 4.4.2, then for all 𝑖 ∈ 𝑉 and a.e. 𝑡 ∈ 𝑇,

𝛽𝑖(𝑡) =


1

2
+ 𝜀(ℒ(𝑟,𝑠)𝑢(𝑡))𝑖 − 𝜀𝜇𝑖 𝑓𝑖 , if 𝑢𝑖(𝑡) = 0,

0, if 𝑢𝑖(𝑡) ∈ (0, 1),
− 1

2
+ 𝜀(ℒ(𝑟,𝑠)𝑢(𝑡))𝑖 + 𝜀𝜇𝑖(1 − 𝑓𝑖), if 𝑢𝑖(𝑡) = 1.

(4.10)

Let

𝑄 := min

𝑖∈𝑉
𝑑−𝑟𝑖

∑
𝑗∈𝑉

𝜔𝑖 𝑗(𝑑−𝑠𝑖 − 𝑑−𝑠𝑗 ) ≤ 0.

Then for a.e. 𝑡 ∈ 𝑇,

𝛽(𝑡) ∈ 𝒱[−1/2+𝜀𝑄,1/2].

4.4.1 An integral form for double-obstacle Allen–Cahn

Theorem 4.4.3 (Explicit integral forms). Let (𝑢, 𝛽) ∈ 𝒱[0,1],𝑡∈𝑇 ×𝒱𝑡∈𝑇 , and recall that

𝐹𝑡 is (1 − 𝑒−𝑡𝑥)/𝑥 extended to matrix input via its Taylor series.

Then (𝑢, 𝛽) satisfies Definition 4.4.2 if and only if the following hold:

• 𝛽 is locally integrable,

• for a.e. 𝑡 ∈ 𝑇, 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)) and 𝛽(𝑡) ∈ 𝒱[−1/2+𝜀𝑄,1/2], and

• for all 𝑡 ∈ 𝑇 (for 𝐵 := ℒ +𝑀 − 𝜀−1𝐼):

𝑢(𝑡) = 𝑒−𝑡𝐵𝑢(0) + 𝐹𝑡(𝐵)
(
𝑀 𝑓 − 1

2𝜀
1
)
+ 1

𝜀

∫ 𝑡

0

𝑒−(𝑡−𝑠)𝐵𝛽(𝑠) 𝑑𝑠. (4.11)

Where 𝑄 is as in the previous theorem.

Proof. Let (𝑢, 𝛽) obey Definition 4.4.2. Note that we can rewrite both (4.9) in the form:

𝜀
𝑑𝑢

𝑑𝑡
(𝑡) + 𝜀𝐵𝑢(𝑡) − 𝑣 = 𝛽(𝑡) (4.12)

where 𝑣 = 𝜀𝑀 𝑓 − 1

2
1. Then 𝛽 is a sum of a continuous function and the derivative of

a 𝐶1
function and hence is locally integrable. The pointwise bounds on 𝛽 follow from

Theorem 4.4.2. Finally (4.12) can be further rewritten:

𝜀
𝑑

𝑑𝑡

(
𝑒 𝑡𝐵𝑢(𝑡)

)
= 𝑒 𝑡𝐵(𝛽(𝑡) + 𝑣).

Hence, by the fundamental theorem of calculus on 𝐻1
[Bre83, Theorem 8.2], if 𝑢 ∈

𝐶0(𝑇;𝒱[0,1]) ∩ 𝐻1(𝑇;𝒱) solves (4.9), then for all 𝑡 ∈ 𝑇

𝑒 𝑡𝐵𝑢(𝑡) − 𝑢(0) = 1

𝜀

(∫ 𝑡

0

𝑒 𝑠𝐵𝑣 𝑑𝑠 +
∫ 𝑡

0

𝑒 𝑠𝐵𝛽(𝑠) 𝑑𝑠
)
=

1

𝜀
𝑒 𝑡𝐵𝐹𝑡(𝐵)𝑣 +

1

𝜀

∫ 𝑡

0

𝑒 𝑠𝐵𝛽(𝑠) 𝑑𝑠

(where we have used that

∫ 𝑡

0

𝑒 𝑠𝐵 𝑑𝑠 = 𝑒 𝑡𝐵𝐹𝑡(𝐵), which is simple to verify) and so

𝑢(𝑡) = 𝑒−𝑡𝐵𝑢(0) + 1

𝜀
𝐹𝑡(𝐵)𝑣 +

1

𝜀
𝑒−𝑡𝐵

∫ 𝑡

0

𝑒 𝑠𝐵𝛽(𝑠) 𝑑𝑠. (4.13)

Thus if 𝑢 solves (4.9) then 𝑢 solves (4.11).
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Now, let (𝑢, 𝛽) ∈ 𝒱[0,1],𝑡∈𝑇 × 𝒱𝑡∈𝑇 satisfy, at a.e. 𝑡 ∈ 𝑇, 𝛽(𝑡) ∈ ℬ(𝑢(𝑡)), and 𝛽(𝑡) ∈
𝒱[−1/2+𝜀𝑄,1/2] is locally integrable, and let at all 𝑡 ∈ 𝑇 𝑢(𝑡) be given by (4.13). Then,

differentiating (4.13), at 𝑡 ∈ 𝑇 𝑢 has formal weak derivative

𝑑𝑢

𝑑𝑡
(𝑡) = −𝐵𝑒−𝑡𝐵𝑢(0) + 1

𝜀
𝑒−𝑡𝐵𝑣 + 1

𝜀
𝛽(𝑡) − 1

𝜀
𝐵

∫ 𝑡

0

𝑒−(𝑡−𝑠)𝐵𝛽(𝑠) 𝑑𝑠

which can be checked to satisfy (4.12). Furthermore 𝑢 ∈ 𝐶0(𝑇;𝒱[0,1]) ∩𝐻1(𝑇;𝒱), but we

omit the details. □

4.4.2 Uniqueness

Theorem 4.4.4. Let 𝑇 = [0, 𝑇0] or [0,∞) and let (𝑢, 𝛽) and (𝑣, 𝛾) satisfy 𝑢, 𝑣 ∈
𝐻1

𝑙𝑜𝑐
(𝑇;𝒱) ∩ 𝐶0(𝑇;𝒱[0,1]) and 𝑢(0) = 𝑣(0). If (𝑢, 𝛽) and (𝑣, 𝛾) solve (4.9), then

𝑢(𝑡) = 𝑣(𝑡) for all 𝑡 ∈ 𝑇 and 𝛽(𝑡) = 𝛾(𝑡) at a.e. 𝑡 ∈ 𝑇.

4.5 The SDIE scheme for double-obstacle Allen–Cahn, and
the link to the MBO scheme

4.5.1 Defining the double-obstacle SDIE scheme
As with the Allen–Cahn flow, we have to introduce subdifferential terms.

Definition 4.5.1 (Double-obstacle SDIE scheme with fidelity forcing). For 𝑢0 ∈ 𝒱[0,1],
𝑛 ∈ N we define the SDIE scheme for the double-obstacle Allen–Cahn flow as the iterative
scheme: (

1 − 𝜏
𝜀

)
𝑢𝑛+1 − 𝒮𝜏𝑢𝑛 +

𝜏
2𝜀

1 =
𝜏
𝜀
𝛽𝑛+1 (4.14)

for 𝛽𝑛+1 ∈ ℬ(𝑢𝑛+1). For the rest of this chapter we will define 𝜆 := 𝜏/𝜀

4.5.2 The variational form and link to the MBO scheme

Theorem 4.5.1. Let 𝜆 ∈ [0, 1]. If (𝑢𝑛+1 , 𝛽𝑛+1) solves (4.14) with 𝛽𝑛+1 ∈ ℬ(𝑢𝑛+1), then,

for all 𝑟′ ∈ R, 𝑢𝑛+1 solves:

𝑢𝑛+1 ∈ arg min

𝑢∈𝒱[0,1]

𝜆⟨𝑢, 1 − 𝑢⟩𝒱 ,𝑟′ + ∥𝑢 − 𝑆𝜏𝑢𝑛 ∥2

𝒱 ,𝑟′ . (4.15)

For 𝜆 ∈ [0, 1), (4.15) has unique solution

(𝑢𝑛+1)𝑖 =


0, if (𝒮𝜏𝑢𝑛)𝑖 < 1

2
𝜆,

1

2
+ (𝒮𝜏𝑢𝑛 )𝑖−1/2

1−𝜆 , if
1

2
𝜆 ≤ (𝒮𝜏𝑢𝑛)𝑖 < 1 − 1

2
𝜆,

1, if (𝒮𝜏𝑢𝑛)𝑖 ≥ 1 − 1

2
𝜆,

(4.16a)

with corresponding 𝛽𝑛+1 = 𝜆−1

(
(1 − 𝜆)𝑢𝑛+1 − 𝒮𝜏𝑢𝑛 + 𝜆

2
1
)
. For 𝜆 = 1, (4.15) has

solutions

(𝑢𝑛+1)𝑖 ∈


{1}, (𝒮𝜏𝑢𝑛)𝑖 > 1/2,

[0, 1], (𝒮𝜏𝑢𝑛)𝑖 = 1/2,

{0}, (𝒮𝜏𝑢𝑛)𝑖 < 1/2,

(4.16b)
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with corresponding 𝛽𝑛+1 = 1

2
1 − 𝒮𝜏𝑢𝑛 .

Hence if 𝑢𝑛+1 solves (4.15) then there exists 𝛽𝑛+1 ∈ ℬ(𝑢𝑛+1) such that (𝑢𝑛+1 , 𝛽𝑛+1)
solves (4.14). Note that this is the MBO threasholding.

Proof. Let (𝑢𝑛+1 , 𝛽𝑛+1) solve (4.14), so 𝛽𝑛+1 ∈ ℬ(𝑢𝑛+1). Let 𝑧 := 𝒮𝜏𝑢𝑛 . We seek to show

that for 0 ≤ 𝜆 ≤ 1

𝜆⟨𝑢𝑛+1 , 1 − 𝑢𝑛+1⟩𝒱 + ⟨𝑢𝑛+1 − 𝑧, 𝑢𝑛+1 − 𝑧⟩𝒱 ≤ 𝜆⟨𝜂, 1 − 𝜂⟩𝒱 + ⟨𝜂 − 𝑧, 𝜂 − 𝑧⟩𝒱

for all 𝜂 ∈ 𝒱[0,1]. By rearranging and cancelling this is equivalent to

0 ≤ ⟨𝜂 − 𝑢𝑛+1 ,𝜆1 − 2𝑧⟩𝒱 + (1 − 𝜆) (⟨𝜂, 𝜂⟩𝒱 − ⟨𝑢𝑛+1 , 𝑢𝑛+1⟩𝒱)
= ⟨𝜂 − 𝑢𝑛+1 ,𝜆1 − 2𝑧 + (1 − 𝜆)(𝜂 + 𝑢𝑛+1)⟩𝒱
= ⟨𝜂 − 𝑢𝑛+1 , 2𝜆𝛽𝑛+1 + (1 − 𝜆)(𝜂 − 𝑢𝑛+1)⟩𝒱
= 2𝜆 ⟨𝜂 − 𝑢𝑛+1 , 𝛽𝑛+1⟩𝒱 + (1 − 𝜆)∥𝜂 − 𝑢𝑛+1∥2

𝒱

where the second equality follows directly from (4.14). Finally, we have by Lemma 4.4.1

that this inequality holds for all 𝜂 ∈ 𝒱[0,1].
Next, let 𝑢 solve (4.15). The functional in (4.15) can be rewritten as

𝜆 ⟨𝑢, 1 − 𝑢⟩𝒱 ,𝑟′ + ∥𝑢 − 𝒮𝜏𝑢𝑛 ∥2

𝒱 ,𝑟′ =
∑
𝑖∈𝑉

𝑑𝑟
′
𝑖 𝑔𝑖 ,𝑛(𝑢𝑖)

where

𝑔𝑖 ,𝑛(𝑥) := 𝜆𝑥(1 − 𝑥) + (𝑥 − (𝒮𝜏𝑢𝑛)𝑖)2

so we can reduce (4.15) to the system of 1-dimensional problems

(𝑢𝑛+1)𝑖 ∈ arg min

𝑥∈[0,1]
𝑔𝑖 ,𝑛(𝑥).

Differentiating, we get that for 0 < 𝜆 < 1, 𝑔𝑖 ,𝑛 is minimised at

𝑥 =
(𝒮𝜏𝑢𝑛)𝑖 − 𝜆/2

1 − 𝜆
=

1

2

+ (𝒮𝜏𝑢𝑛)𝑖 − 1/2

1 − 𝜆
.

Therefore for 0 ≤ 𝜆 < 1 the solution 𝑢 is given by

𝑢𝑖 =


0, if (𝒮𝜏𝑢𝑛)𝑖 < 1

2
𝜆

1

2
+ (𝒮𝜏𝑢𝑛 )𝑖−1/2

1−𝜆 , if
1

2
𝜆 ≤

(
𝑒−𝜏Δ𝑢𝑛

)
𝑖
< 1 − 1

2
𝜆

1, if (𝒮𝜏𝑢𝑛)𝑖 ≥ 1 − 1

2
𝜆

and hence

𝜆−1

(
(1 − 𝜆)𝑢𝑖 − (𝒮𝜏𝑢𝑛)𝑖 +

𝜆
2

)
=


1

2
− 𝜆−1(𝒮𝜏𝑢𝑛)𝑖 , if (𝒮𝜏𝑢𝑛)𝑖 < 1

2
𝜆,

0, if
1

2
𝜆 ≤ (𝒮𝜏𝑢𝑛)𝑖 < 1 − 1

2
𝜆,

− 1

2
+ 𝜆−1(1 − (𝒮𝜏𝑢𝑛)𝑖), if (𝒮𝜏𝑢𝑛)𝑖 ≥ 1 − 1

2
𝜆.

=


1

2
− 𝜆−1(𝒮𝜏𝑢𝑛)𝑖 , if 𝑢𝑖 = 0,

0, if 𝑢𝑖 ∈ (0, 1),
− 1

2
+ 𝜆−1(1 − (𝒮𝜏𝑢𝑛)𝑖), if 𝑢𝑖 = 1.
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Thus, noting that the top case has a non-negative value and the bottom case always has

a non-positive value, we observe that 𝛽 := 𝜆−1

(
(1 − 𝜆)𝑢 − 𝒮𝜏𝑢𝑛 + 𝜆

2
1
)
∈ ℬ(𝑢), so (𝑢, 𝛽)

solves (4.14).

If 𝜆 = 1 then examine the functional in (4.15) for 𝜆 = 1:

⟨𝑢, 1 − 𝑢⟩𝒱 + ∥𝑢 − 𝒮𝜏𝑢𝑛 ∥2

𝒱
= ⟨𝑢, 1 − 𝑢⟩𝒱 + ⟨𝑢 − 𝒮𝜏𝑢𝑛 , 𝑢 − 𝒮𝜏𝑢𝑛⟩𝒱
= ⟨𝑢, 1⟩𝒱 − ⟨𝑢, 𝑢⟩𝒱 + ⟨𝑢, 𝑢⟩𝒱 − 2 ⟨𝑢,𝒮𝜏𝑢𝑛⟩𝒱 + ⟨𝒮𝜏𝑢𝑛 ,𝒮𝜏𝑢𝑛⟩𝒱
≃ ⟨𝑢, 1 − 2𝒮𝜏𝑢𝑛⟩𝒱 ,

and therefore 𝑢 as a minimiser must obey

𝑢𝑖 ∈


{1}, (𝒮𝜏𝑢𝑛)𝑖 > 1/2,

[0, 1], (𝒮𝜏𝑢𝑛)𝑖 = 1/2,

{0}, (𝒮𝜏𝑢𝑛)𝑖 < 1/2.

Hence 𝛽 ∈ ℬ(𝑢) if and only if for each 𝑖 ∈ 𝑉

𝛽𝑖 ∈


[0,∞), (𝒮𝜏𝑢𝑛)𝑖 ≤ 1/2

{0}, (𝒮𝜏𝑢𝑛)𝑖 = 1/2, 𝑢𝑖 ∈ (0, 1)
(−∞, 0], (𝒮𝜏𝑢𝑛)𝑖 ≥ 1/2

and thus
1

2
1 − 𝒮𝜏𝑢𝑛 ∈ ℬ(𝑢), so (𝑢, 𝛽) solves (4.14). □

We note a useful consequence of this result.

Theorem 4.5.2. For𝜆 ∈ [0, 1)a and all 𝑛 ∈ N, if 𝑢𝑛 and 𝑣𝑛 are SDIE sequences defined

according to Definition 4.5.1 with initial states 𝑢0 , 𝑣0 ∈ 𝒱[0,1] and 𝜉1 is the smallest

eigenvalue of ℒ +𝑀, then

∥𝑢𝑛 − 𝑣𝑛 ∥𝒱 ≤ 𝑒−𝑛𝜉1𝜏(1 − 𝜆)−𝑛 ∥𝑢0 − 𝑣0∥𝒱 . (4.17)

a
For the MBO case 𝜆 = 1 the thresholding is discontinuous so we do not get an analogous property.

Exercise 9. Prove this.

4.5.3 Freezing
If 𝜏 is taken too small, the SDIE scheme “freezes”. Fix 𝑆 ⊆ 𝑉 and 𝛼 ≥ 0. Then there exists

𝜏∗ (depending on 𝑆, 𝛼, ℒ, 𝑀, and 𝑓 ) such that |(𝒮𝜏𝜒𝑆)𝑖 − (𝜒𝑆)𝑖 | ≤ 𝛼 for all 𝑖 ∈ 𝑉 and

𝜏 ≤ 𝜏∗. Then if 𝛼 = 1

2
it follows that the only valid MBO update of 𝑢𝑛 = 𝜒𝑆 is 𝑢𝑛+1 = 𝜒𝑆

for 𝜏 < 𝜏∗. And if 𝛼 = 𝜏
2𝜀 < 1

2
it follows that the only valid SDIE update of 𝑢𝑛 = 𝜒𝑆 is

𝑢𝑛+1 = 𝜒𝑆 for 𝜏 ≤ 𝜏∗. Note that in this latter case 𝜏∗ has a lower value.

4.6 The 𝜏 ↓ 0 limit of the double-obstacle SDIE scheme
To simplify notation we write (4.14) in the form

(1 − 𝜆)𝑢𝑛+1 − 𝑒−𝜏𝐴𝑢𝑛 − 𝑤 = 𝜆𝛽𝑛+1 (4.18)

where 𝜆 := 𝜏/𝜀, 𝐴 := ℒ +𝑀, and 𝑤 := − 1

2
𝜆1 + 𝐹𝜏(𝐴)𝑀 𝑓 .

We now solve the SDIE recurrence relation for the 𝑛𝑡ℎ term.
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0 0.5 1

0

0.5

1

𝜏/2𝜀 1 − 𝜏/2𝜀

(𝒮𝜏𝑢𝑛)𝑖

(𝑢
𝑛
+1
) 𝑖

Figure 4.1: Plot of the piecewise linear thresholding of 𝒮𝜏𝑢𝑛 described by (4.16a).

Proposition 4.6.1. For 𝜆 ∈ [0, 1) the sequence generated by (4.18) is given by:

𝑢𝑛 =(1 − 𝜆)−𝑛𝑒−𝑛𝜏𝐴𝑢0 +
𝑛∑
𝑘=1

(1 − 𝜆)−𝑘 𝑒−(𝑘−1)𝜏𝐴𝑤

+ 𝜆
1 − 𝜆

𝑛∑
𝑘=1

(1 − 𝜆)−(𝑛−𝑘)𝑒−(𝑛−𝑘)𝜏𝐴𝛽𝑘
(4.19)

Proof. An unexciting proof by induction. □

Theorem 4.6.2. Let 𝑡 ≥ 0, 𝜀 > 0, 𝐵 := 𝐴 − 𝜀−1𝐼, and 𝑣 := 𝜀𝑀 𝑓 − 1

2
1. Then with

respect to the limit of 𝜏 ↓ 0 and 𝑛 → ∞ with 𝑛𝜏 − 𝑡 ∈ [0, 𝜏):

1. (1 − 𝜆)−𝑛𝑒−𝑛𝜏𝐴𝑢0 = 𝑒−𝑡𝐵𝑢0 + 𝒪(𝜏).
2.

∑𝑛
𝑘=1

(1 − 𝜆)−𝑘 𝑒−(𝑘−1)𝜏𝐴𝑤 = 1

𝜀𝐹𝑡(𝐵)𝑣 + 𝒪(𝜏).
3.

𝜆
1−𝜆

∑𝑛
𝑘=1

(1 − 𝜆)−(𝑛−𝑘)𝑒−(𝑛−𝑘)𝜏𝐴𝛽𝑘 = 𝜆
∑𝑛
𝑘=1

𝑒−(𝑛−𝑘)𝜏𝐵𝛽𝑘 + 𝒪(𝜏).

Hence by (4.19), the SDIE term obeys

𝑢𝑛 = 𝑒−𝑡𝐵𝑢0 +
1

𝜀
𝐹𝑡(𝐵)𝑣 + 𝜆

𝑛∑
𝑘=1

𝑒−(𝑛−𝑘)𝜏𝐵𝛽𝑘 + 𝒪(𝜏). (4.20)

Note. The key idea will be to rewrite the sum in (4.20) as an integral, and connect to the

integral form of double obstacle Allen–Cahn.
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Definition 4.6.1. Define the piecewise constant function 𝑧𝜏 : [0,∞) → 𝒱

𝑧𝜏(𝑠) :=

{
𝑒𝜏𝐵𝛽[𝜏]

1
, 0 ≤ 𝑠 ≤ 𝜏

𝑒 𝑘𝜏𝐵𝛽[𝜏]
𝑘
, (𝑘 − 1)𝜏 < 𝑠 ≤ 𝑘𝜏 for 𝑘 ∈ N

and the function

𝛾𝜏(𝑠) := 𝑒−𝑠𝐵𝑧𝜏(𝑠) =
{
𝑒(𝜏−𝑠)𝐵𝛽[𝜏]

1
, 0 ≤ 𝑠 ≤ 𝜏

𝑒(𝑘𝜏−𝑠)𝐵𝛽[𝜏]
𝑘
, (𝑘 − 1)𝜏 < 𝑠 ≤ 𝑘𝜏 for 𝑘 ∈ N

using the bookkeeping notation of the superscript [𝜏] to keep track of the time-step governing
𝑢𝑛 and 𝛽𝑛 .

Theorem 4.6.3. For any sequence 𝜏(0)𝑛 ↓ 0 with 𝜏(0)𝑛 < 𝜀 for all 𝑛, there exists a

function 𝑧 : [0,∞) → 𝒱 and a subsequence 𝜏𝑛 such that

(A) For all 𝑡 ≥ 0, ∫ 𝑡

0

𝑧𝜏𝑛 (𝑠) 𝑑𝑠 →
∫ 𝑡

0

𝑧(𝑠) 𝑑𝑠.

(B) The Cesàro sums converge pointwise: there exists 𝑁𝑘 → ∞ such that for

almost every 𝑡 ≥ 0

1

𝑁𝑘

𝑁𝑘∑
𝑛=1

𝑧𝜏𝑛 (𝑡) → 𝑧(𝑡) and

1

𝑁𝑘

𝑁𝑘∑
𝑛=1

𝛾𝜏𝑛 (𝑡) → 𝛾(𝑡)

as 𝑘 → ∞, where 𝛾(𝑡) := 𝑒−𝑡𝐵𝑧(𝑡).

Proof. Omitted. □

We thus infer convergence of the SDIE iterates.

Theorem 4.6.4. Let 𝜏(0)𝑛 ↓ 0 with 𝜏𝑛 < 𝜀. Let 𝜏𝑛 be the subsequence from the previous

theorem. Define for all 𝑡 ≥ 0:

𝑢̂(𝑡) := lim

𝑛→∞,𝑚=⌈𝑡/𝜏𝑛⌉
𝑢
[𝜏𝑛 ]
𝑚 . (4.21)

Then

𝑢̂(𝑡) = 𝑒−𝑡𝐵𝑢0 +
1

𝜀
𝐹𝑡(𝐵)𝑣 +

1

𝜀

∫ 𝑡

0

𝑒−(𝑡−𝑠)𝐵𝛾(𝑠) 𝑑𝑠. (4.22)

Note the similarity between (4.22) and the explicit form for Allen–Cahn solutions

(4.11).

Proof. By the above discussion, we can rewrite 𝑢̂(𝑡) as:

𝑢̂(𝑡) = 𝑒−𝑡𝐵𝑢0 +
1

𝜀
𝐹𝑡(𝐵)𝑣 + lim

𝑛→∞
𝜏𝑛
𝜀

𝑚∑
𝑘=1

𝑒−(𝑚−𝑘)𝜏𝑛𝐵𝛽[𝜏𝑛 ]
𝑘

= 𝑒−𝑡𝐵𝑢0 +
1

𝜀
𝐹𝑡(𝐵)𝑣 +

1

𝜀
lim

𝑛→∞
𝑒−𝑚𝜏𝑛𝐵

∫ 𝑚𝜏𝑛

0

𝑧𝜏𝑛 (𝑠) 𝑑𝑠.
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Next, note that 𝑚𝜏𝑛 = 𝜏𝑛 ⌈𝑡/𝜏𝑛⌉ =: 𝑡 + 𝜂𝑛 where 𝜂𝑛 ∈ [0, 𝜏𝑛). Therefore

lim

𝑛→∞
𝑒−𝑚𝜏𝑛𝐵

∫ 𝑚𝜏𝑛

0

𝑧𝜏𝑛 (𝑠) 𝑑𝑠 = lim

𝑛→∞
𝑒−𝜂𝑛𝐵𝑒−𝑡𝐵

∫ 𝑡

0

𝑧𝜏𝑛 (𝑠) 𝑑𝑠 + 𝑒−𝜂𝑛𝐵𝑒−𝑡𝐵
∫ 𝑡+𝜂𝑛

𝑡

𝑧𝜏𝑛 (𝑠) 𝑑𝑠

= lim

𝑛→∞
𝑒−𝑡𝐵

∫ 𝑡

0

𝑧𝜏𝑛 (𝑠) 𝑑𝑠 + 𝑒−𝑡𝐵
∫ 𝑡+𝜂𝑛

𝑡

𝑧𝜏𝑛 (𝑠) 𝑑𝑠 as 𝑒−𝜂𝑛𝐵 = 𝐼 + 𝒪(𝜏𝑛)

= lim

𝑛→∞
𝑒−𝑡𝐵

∫ 𝑡

0

𝑧𝜏𝑛 (𝑠) 𝑑𝑠 as 𝑧𝜏𝑛 (𝑠) is bounded on [𝑡 , 𝑡 + max

𝑛′
𝜂𝑛′] uniformly in 𝑛

= 𝑒−𝑡𝐵
∫ 𝑡

0

𝑧(𝑠) 𝑑𝑠 by Theorem 4.6.3(A).

Finally, 𝑒−𝑡𝐵𝑧(𝑠) = 𝑒−(𝑡−𝑠)𝐵𝛾(𝑠). □

Theorem 4.6.5. For any given 𝑢0 ∈ 𝒱[0,1], 𝜀 > 0, and 𝜏(0)𝑛 ↓ 0, there exists a subse-

quence 𝜏𝑛 of 𝜏(0)𝑛 with 𝜏𝑛 < 𝜀 for all 𝑛, along which the SDIE iterates (𝑢[𝜏𝑛 ]𝑚 , 𝛽[𝜏𝑛 ]𝑚 )
given by (4.14) with initial state 𝑢0 converge to the double-obstacle Allen–Cahn

solution with initial condition 𝑢0 in the following sense:

• for each 𝑡 ≥ 0, as 𝑛 → ∞ and 𝑚 = ⌈𝑡/𝜏𝑛⌉, 𝑢[𝜏𝑛 ]𝑚 → 𝑢̂(𝑡), and

• there is a sequence 𝑁𝑘 → ∞ such that for almost every 𝑡 ≥ 0,
1

𝑁𝑘

∑𝑁𝑘

𝑛=1
𝛽[𝜏𝑛 ]𝑚 →

𝛾(𝑡)

where (𝑢̂ , 𝛾) is the solution to (4.9) with 𝑢̂(0) = 𝑢0.

Proof. The only thing left to check is that (𝑢̂ , 𝛾) is an Allen–Cahn solution, which we

can do by checking that all the conditions in Theorem 4.4.3 are satisfied. We omit the

details. □

Corollary 4.6.6. Let 𝑢0 ∈ 𝒱[0,1], 𝜀 > 0, and 𝜏𝑛 ↓ 0 with 𝜏𝑛 < 𝜀 for all 𝑛. Then for

each 𝑡 ≥ 0, as 𝑛 → ∞, 𝑢
[𝜏𝑛 ]
⌈𝑡/𝜏𝑛⌉ → 𝑢̂(𝑡).

Proof. Exercise, uses uniqueness of Allen–Cahn trajectories. □

4.6.1 The well-posedness of double-obstacle Allen–Cahn
The above theorem also proves that solutions to double-obstacle Allen–Cahn always exist

for any initial condition, which we hadn’t proved until then.

We can also prove well-posedness.

Theorem 4.6.7. Let 𝑢0 , 𝑣0 ∈ 𝒱[0,1] define Allen–Cahn trajectories 𝑢, 𝑣 by Defini-

tion 4.4.2. Then, if 𝜉1 := min 𝜎(𝐴), then

∥𝑢(𝑡) − 𝑣(𝑡)∥𝒱 ≤ 𝑒−𝜉1𝑡 𝑒 𝑡/𝜀∥𝑢0 − 𝑣0∥𝒱 . (4.23)

Proof. Fix 𝑡 ≥ 0 and let 𝑚 := ⌈𝑡/𝜏𝑛⌉. By Corollary 4.6.6, we can take 𝜏𝑛 ↓ 0 such that the

SDIE sequences 𝑢
[𝜏𝑛 ]
𝑚 → 𝑢(𝑡) and 𝑣

[𝜏𝑛 ]
𝑚 → 𝑣(𝑡) as 𝑛 → ∞. Then by (4.17):

∥𝑢[𝜏𝑛 ]𝑚 − 𝑣[𝜏𝑛 ]𝑚 ∥𝒱 ≤ 𝑒−𝑚𝜉1𝜏𝑛 (1 − 𝜏𝑛/𝜀)−𝑚 ∥𝑢0 − 𝑣0∥𝒱

and taking 𝑛 → ∞ gives (4.23). □
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4.6.2 Double-obstacle Allen–Cahn as a gradient flow

Theorem 4.6.8. The double-obstacle Allen–Cahn trajectory 𝑢 defined by Defini-

tion 4.4.2 has GL
(𝑟,𝑠)
𝜀,𝜇, 𝑓 (𝑢(𝑡)) monotonically decreasing in 𝑡. More precisely: for all

𝑡 > 𝑠 ≥ 0,

GL
(𝑟,𝑠)
𝜀,𝜇, 𝑓 (𝑢(𝑠)) − GL

(𝑟,𝑠)
𝜀,𝜇, 𝑓 (𝑢(𝑡)) ≥

1

2(𝑡 − 𝑠) ∥𝑢(𝑠) − 𝑢(𝑡)∥
2

𝒱 .

Furthermore, this entails an explicit 𝐶0,1/2
condition for 𝑢

∥𝑢(𝑠) − 𝑢(𝑡)∥𝒱 ≤
√
|𝑡 − 𝑠 |

√
2 GL

(𝑟,𝑠)
𝜀,𝜇, 𝑓 (𝑢(0)).

Proof (sketch). Represent 𝑢 as the limit of SDIE sequences, and use the Lyapunov energy

for the SDIE scheme you will derive in Assignment 2. □
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Chapter 5

Some crucial numerical linear
algebra

5.1 Why we need numerical linear algebra
In this chapter we will be thinking about how one might implement the methods from

the previous chapter, in particular the graph MBO scheme. This requires thinking about

computing

𝒮𝜏𝑢 := 𝑒−𝜏(ℒ+𝑀)𝑢 + 𝐹𝑡(ℒ +𝑀)𝑀 𝑓 .

But there is a big issue: ℒ is an 𝑁 × 𝑁 matrix, where 𝑁 = |𝑉 |. In the end, we will

be taking 𝑉 to be the set of pixels in an image, so 𝑁 can easily be in the hundreds of

thousands, millions, or even higher. For example, the image in Figure 5.1 has over 15

million pixels.

If 𝑉 had 10
6

elements, and each entry in ℒ took 1 byte of memory to store, then

storing ℒ alone would require 10
12

bytes, i.e. 1 TB of memory! Never mind computing

the matrix exponential of ℒ. Therefore, we will need to be cleverer if we ever want these

methods to run in a human lifetime on ordinary computers, which is where the methods

of this chapter come in.

5.2 A review of “big 𝒪 notation”
A key tool for talking about the computational challenges we will need to overcome in

this chapter, and the efficiency of the methods we will be describing, is the so-called “big

𝒪 notation”.

Definition 5.2.1. Let 𝑋 ⊆ R be unbounded (for our purposes 𝑋 will be either R or N),
𝑓 : 𝑋 → R, and 𝑔 : 𝑋 → (0,∞). Then we will write

𝑓 (𝑥) = 𝒪(𝑔(𝑥))

with respect to the limit 𝑥 → ∞ if

lim sup

𝑥→∞

| 𝑓 (𝑥)|
𝑔(𝑥) := lim

𝑛→∞
sup

𝑥∈𝑋∩(𝑛,∞)

| 𝑓 (𝑥)|
𝑔(𝑥) < ∞.

That is, there exists 𝑀 < ∞ such that | 𝑓 (𝑥)| ≤ 𝑀𝑔(𝑥) for all sufficiently large 𝑥.

51
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Figure 5.1: 3487 × 4356 image obtained from https://images.unsplash.com/
photo-1679882028877-8ff92cf0abd4 (Photographer: Aaron Burden).

Note. The use of this notation in practical settings is always a little metaphorical. Tech-

nically, all 𝒪 notation cares about is the behaviour in the limit, whilst in practice there

are only a finite number of inputs we will ever enter into any function before the heat

death of the universe. As such, technically these settings never overlap. The function

𝑓 (𝑥) =
{√

𝑥, 𝑥 < 10
10

100

,

𝑒 𝑒
𝑥
, 𝑥 ≥ 10

10
100

,

is technically 𝒪(𝑒 𝑒𝑥 ) but in practice is

√
𝑥, whilst the function

𝑓 (𝑥) =
{
𝑒 𝑒

𝑥
, 𝑥 < 10

10
100

,

𝑒 𝑒
10

10
100

, 𝑥 ≥ 10
10

100

,

is technically 𝒪(1) but in practice is 𝑒 𝑒
𝑥
. Moreover, the 𝒪 notation can hide massive

multiplicative constants. So, the notation gives a guide for how these things grow, but it

must be handled with caution.

Proposition 5.2.1 (Some key linear algebra big 𝒪s).

1. A matrix 𝐴 ∈ R𝑀×𝑁
requires 𝒪(𝑀𝑁) memory to store (is 𝒪(𝑀𝑁) “in space”).

2. If𝐴 ∈ R𝑀×𝑁
and 𝐵 ∈ R𝑁×𝐾

, then𝐴𝐵 requires 𝒪(𝑀𝑁𝐾) operations to compute

(is 𝒪(𝑀𝑁𝐾) “in time”) via the naïve formula.
a

In particular, for 𝐴 ∈ R𝑀×𝑁

and 𝑣 ∈ R𝑁 a matrix-vector computation 𝐴𝑣 is 𝒪(𝑀𝑁) in time.

3. If 𝐴 ∈ R𝑁×𝑁
then computing 𝐴−1

and solving the linear system 𝐴𝑥 = 𝑏 are

both 𝒪(𝑁3) in time.

https://images.unsplash.com/photo-1679882028877-8ff92cf0abd4
https://images.unsplash.com/photo-1679882028877-8ff92cf0abd4
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a
For 𝑀 = 𝑁 = 𝐾 this can be done in 𝒪(𝑁2.8074) time by Strassen’s algorithm [S

+
69], and there was a

major breakthrough recently in this area by DeepMind’s AlphaTensor [FBH
+

22].

The big advantage to using this notation is that we don’t have to worry about implemen-

tation details like how much memory a matrix entry takes up or exactly how fast our

computer adds or multiplies numbers. These all get abstracted away.

In the case of ℒ, we therefore naively require 𝒪(𝑁2) space and 𝒪(𝑁2) or 𝒪(𝑁3) time

to perform our desired computations. We will be supposing throughout this chapter

that 𝑁 is much too large for anything meaningfully above 𝒪(𝑁) in either space or time

to be practical.

5.3 Computing the matrix exponential
The key quantity which we wish to compute in order to compute graph diffusion (and

thereby compute the MBO or SDIE schemes) is the matrix exponential:

𝑒 𝑡𝐴 :=

∞∑
𝑛=0

𝑡𝑛

𝑛!

𝐴𝑛 (5.1)

or rather, the matrix-vector product 𝑒𝐴𝑣. For such a simple to express concept, the matrix

exponential turns out to be remarkably tricky to compute, a state of affairs perhaps no

better communicated than by the title of Moler and Van Loan’s classic paper “Nineteen

Dubious Ways to Compute the Exponential of a Matrix” [MVL78].

The discussion in this chapter will draw primarily from Moler and Van Loan’s

“Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years

Later” [MVL03] and Higham’s Functions of Matrices: Theory and Computation [Hig08].

5.3.1 Why not use the Taylor series?
The definition of 𝑒 𝑡𝐴 is a Taylor series, why not just use that? That is, why not approximate

𝑒𝐴 ≈
𝑀∑
𝑛=0

1

𝑛!

𝐴𝑛 =: 𝑇𝑀(𝐴)?

The matrix-vector products 𝑒𝐴𝑣 could then be computed via Horner’s method:

𝑣𝑀−1 :=
1

(𝑀 − 1)!𝑣 +
1

𝑀!

𝐴𝑣

𝑣𝑘 :=
1

𝑘!
𝑣 + 𝐴𝑣𝑘+1

gives 𝑣0 = 𝑇𝑀(𝐴)𝑣 ≈ 𝑒𝐴𝑣.

The first issue with this is that we would still need to come up with an efficient way

to compute matrix-vector products with 𝐴, but that is at least easier than with 𝑒𝐴.

Another, more serious, issue with this is that the Taylor series can be slow to converge,

even in the scalar case. For example, to compute 𝑒10
to within 1% error requires 18

terms. A worse situation occurs when one seeks to compute 𝑒−10
via the Taylor series.

This requires 35 terms to achieve 1% error, but more importantly computing negative

exponentials is numerically unstable because it involves catastrophic cancellation.
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Catastrophic cancellation is the phenomenon where a small number is computed as

the difference of two much larger numbers. In the case of 𝑒−10
, the largest such difference

is

−10
9

9!

+ 10
10

10!

where 10
9/9! = 10

10/10! ≈ 2755.7. Compared to 𝑒−10
, this is massive. This causes

problems numerically because any rounding errors in the computers arithmetic will be

relative to the magnitude of the number computed. A 0.1% error in the computation

of the large numbers could produce a huge relative error in the computation of their

difference.

A matrix example from [MVL78]:

𝐴 =

(
−49 24

−64 31

)
has true matrix exponential

𝑒𝐴 =

(
−0.74 0.55

−1.47 1.10

)
.

However, when computed using the Taylor series in “short” arithmetic (a rounding error

of about 0.001%) one gets instead (
−22.26 −1.43

−61.50 −3.47

)
requiring 59 terms to converge; this is a massive error. This occurs because 𝐴 has

eigenvalues −1 and −17, so catastrophic cancellation occurs. In the case at hand, we seek

to compute 𝑒−𝑡ℒ or 𝑒−𝑡(ℒ+𝑀)
where ℒ and ℒ + 𝑀 are positive semi-definite, so we will

face the same challenge.

There are two strategies to mitigate this issue, but neither work well in the setting

where 𝐴 is a very large matrix.

Compute 𝑒−𝐴 and invert If 𝐴 has all nonpositive eigenvalues, which are going to cause

trouble, then this can be resolved by using that 𝑒𝐴 = (𝑒−𝐴)−1
, as −𝐴 will be positive

semi-definite. This seems promising since in our case 𝐴 = −𝑡ℒ or similar. However,

computing the inverse is a big obstacle. We cannot store 𝐴 or 𝑒−𝐴 in memory, so we can’t

directly compute the inverse matrix (and we couldn’t store it even if we could).

To compute 𝑒𝐴𝑣 by this method, we would need to solve the linear system 𝑒−𝐴𝑤 = 𝑣
for 𝑤, with only the ability to compute matrix-vector products with 𝑒−𝐴 by the Taylor

series, which is expensive. Solving this linear system in such a setting would be very

difficult, and would require computing many matrix-vector products.

Scaling-and-squaring The standard way to compute matrix exponentials (used for ex-

ample in Matlab’s expm) is the scaling-and-squaring method. This uses the fact that

𝑒𝐴 = (𝑒𝐴/2
𝑠 )2𝑠 so 𝑒𝐴 can be computed via squaring 𝑒𝐴/2

𝑠
𝑠 times. By choosing 𝑠 large

enough, one can ensure that the terms in one’s approximation
1

to 𝑒𝐴/2
𝑠

decay rapidly,

accelerating the convergence and avoiding catastrophic cancellation. However, since

we can’t store 𝐴 in memory or compute matrix-matrix products, we can’t compute the

repeated squarings. One could instead try computing 𝑒𝐴𝑣 = (𝑒𝐴/𝑠)𝑠𝑣 by repeated multi-

plication by 𝑒𝐴/𝑠 , but this is much more expensive and less accurate, especially when we

are computing each multiplication by evaluating the Taylor polynomial times 𝑣.

1
The expm method doesn’t use Taylor approximants, but rather the more accurate Padé approximants,

which approximate 𝑒𝑥 as a rational function rather than a polynomial. However, this difference is not essential

to understanding the method.
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5.3.2 Using the eigendecomposition

Theorem 5.3.1. 𝜉 is an eigenvector of 𝐴 with eigenvalue 𝜆 if and only if 𝜉 is an

eigenvector of 𝑒 𝑡𝐴 with eigenvalue 𝑒𝜆𝑡 .

Proof. The forward direction is very direct:

𝑒 𝑡𝐴𝜉 =

∞∑
𝑛=0

𝑡𝑛

𝑛!

𝐴𝑛𝜉 =

∞∑
𝑛=0

𝑡𝑛

𝑛!

𝜆𝑛𝜉 = 𝑒𝜆𝑡𝜉.

The converse is left as an exercise. □

Let 𝜉𝑘 be the eigenvectors of 𝐴, with corresponding eigenvalues 𝜆𝑘 , and express 𝑣 in

terms of them:

𝑣 =
∑
𝑘

𝑎𝑘𝜉𝑘 .

Then

𝑒 𝑡𝐴𝑣 =
∑
𝑘

𝑎𝑘 𝑒
𝑡𝐴𝜉𝑘 =

∑
𝑘

𝑎𝑘 𝑒
𝜆𝑘 𝑡𝜉𝑘 .

Thus if we can compute 𝜉𝑘 and 𝜆𝑘 and store those pairs for which 𝜆𝑘 𝑡 is largest, we can

compute 𝑒 𝑡𝐴𝑣 efficiently.

5.3.3 Using rank-reduction compute the matrix exponential

Definition 5.3.1 (Rank of a matrix). The rank of a matrix 𝐴 ∈ R𝑀×𝑁 , which we will
denote by rank(𝐴), is the number of linearly independent rows (or, equivalently, columns)
of 𝐴. If 𝑀 = 𝑁 , it is also the number of non-zero eigenvalues (counting multiplicity) of 𝐴.

Recall from Proposition 2.3.2 that we can write the graph Laplacian ℒ in the form

𝑈Λ𝑉𝑇
where 𝑈,Λ, 𝑉 ∈ R𝑁×𝑁

, Λ is the diagonal matrix of eigenvalues, and 𝑉𝑇𝑈 =

𝑈𝑉𝑇 = 𝐼.

Let𝐴 ∈ R𝑁×𝑁
be decomposed in that form𝐴 = 𝑈Λ𝑉𝑇

. Then we can approximate𝐴 by

pulling out just 𝐾 eigenvalues from Λ and the corresponding left and right eigenvectors.

𝐴 ≈ 𝑈𝐾Λ𝐾𝑉
𝑇
𝐾 .

where𝑈𝐾 , 𝑉𝐾 ∈ R𝑁×𝐾
, Λ𝐾 ∈ R𝐾×𝐾 .

Proposition 5.3.2. 𝑉𝑇
𝐾
𝑈𝐾 = 𝐼𝐾 , where 𝐼𝐾 is the 𝐾 × 𝐾 identity matrix.

Proof. Up to a reordering of the columns, which is the same for both 𝑈 and 𝑉 , we can

write 𝑈 =
(
𝑈𝐾 𝑈𝑁−𝐾

)
and 𝑉 =

(
𝑉𝐾 𝑉𝑁−𝐾

)
. This reordering preserves that 𝑉𝑇𝑈 = 𝐼,

so (
𝑉𝑇
𝐾
𝑈𝐾 𝑉𝑇

𝐾
𝑈𝑁−𝐾

𝑉𝑇
𝑁−𝐾𝑈𝐾 𝑉𝑇

𝑁−𝐾𝑈𝑁−𝐾

)
= 𝐼 =

(
𝐼𝐾 0

0 𝐼𝑁−𝐾

)
.

□
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It follows that

𝑒 𝑡𝐴 = 𝐼 + 𝑡𝐴 + 1

2

𝑡2𝐴2 + 1

6

𝑡3𝐴3 + · · ·

≈ 𝐼 + 𝑡𝑈𝐾Λ𝐾𝑉
𝑇
𝐾 + 1

2

𝑡2𝑈𝐾Λ
2

𝐾𝑉
𝑇
𝐾 + 1

6

𝑡3𝑈𝐾Λ
3

𝐾𝑉
𝑇
𝐾 + · · ·

= 𝐼 +𝑈𝐾

(
𝑡Λ𝐾 + 1

2

𝑡2Λ2

𝐾 + 1

6

𝑡3Λ3

𝐾 + · · ·
)
𝑉𝑇
𝐾

= 𝐼 +𝑈𝐾

(
𝑒 𝑡Λ𝐾 − 𝐼𝐾

)
𝑉𝑇
𝐾 .

(5.2)

Exercise 10. What is the error of this approximation?

This allows us to compute

𝑒 𝑡𝐴𝑣 ≈ 𝑣 +𝑈𝐾

((
𝑒 𝑡Λ𝐾 − 𝐼𝐾

)
(𝑉𝑇

𝐾 𝑣)
)

in just 𝒪(𝑁𝐾) operations.

Question. But how to (approximately) compute an accurate rank reduction without

computing the whole spectrum?

5.4 The Nyström extension

The Nyström extension, originally developed by Nyström [Nys30] for integral eigenvalue

problems, and popularised for numerical linear algebra in [FBCM04,WS00], is a method

for rank-reducing a square matrix 𝐴 ∈ R𝑁×𝑁
.

5.4.1 The continuous setting

Nyström’s original work in 1930 was to do not with matrices, but with integral operators,

and that is there that we will begin.

Definition 5.4.1. The eigenvalue problem 𝐴𝑣 = 𝜆𝑣 can be generalised in the continuous
setting to: for all 𝑦 ∈ [0, 1]

𝜆 𝑓 (𝑦) =
∫

1

0

𝐴(𝑦, 𝑥) 𝑓 (𝑥) 𝑑𝑥, (5.3)

where 𝑓 : [0, 1] → R and 𝐴 : [0, 1]2 → R.

Note. The finite dimensional case really is a special case of (5.3). For 𝐴 ∈ R𝑁×𝑁
and

𝑣 ∈ R𝑁 , let

𝐴(𝑦, 𝑥) =
{
𝐴𝑖 𝑗 if 𝑦 ∈ [(𝑖 − 1)/𝑁, 𝑖/𝑁), 𝑥 ∈ [(𝑗 − 1)/𝑁, 𝑗/𝑁)

and

𝑓 (𝑥) =
{
𝑣𝑖 if 𝑥 ∈ [(𝑖 − 1)/𝑁, 𝑖/𝑁).
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Then (5.3) becomes, for 𝑦 ∈ [(𝑖 − 1)/𝑁, 𝑖/𝑁)

𝜆𝑣𝑖 =
𝑁∑
𝑗=1

∫ 𝑗/𝑁

(𝑗−1)/𝑁
𝐴(𝑦, 𝑥) 𝑓 (𝑥) 𝑑𝑥

=

𝑁∑
𝑗=1

∫ 𝑗/𝑁

(𝑗−1)/𝑁
𝐴𝑖 𝑗𝑣 𝑗 𝑑𝑥

=
1

𝑁
(𝐴𝑣)𝑖 .

5.4.2 Quadrature
The key idea of the Nyström extension is to approximate such eigenfunctions 𝑓 by

employing a quadrature of the integral in (5.3).

That is, let 𝑥𝑘 := 𝑘/𝐾 for 𝑘 = 1 to 𝐾. Then by the definition of the integral∫
1

0

𝑔(𝑥) 𝑑𝑥 ≈
𝐾∑
𝑘=1

𝑔(𝑥𝑘)
1

𝐾
.

Hence for 𝐴 and 𝑓 solving (5.3)

𝜆 𝑓 (𝑦) ≈ 1

𝐾

𝐾∑
𝑘=1

𝐴(𝑦, 𝑥𝑘) 𝑓 (𝑥𝑘).

Let 𝑣 ∈ R𝐾 be defined by 𝑣𝑘 := 𝑓 (𝑥𝑘) and 𝐴̃ ∈ R𝐾×𝐾 by 𝐴̃𝑖 𝑗 := 𝐴(𝑥𝑖 , 𝑥 𝑗). Then by setting

𝑦 = 𝑥𝑘

𝜆𝑣𝑘 ≈
1

𝐾

𝐾∑
ℓ=1

𝐴̃𝑘ℓ𝑣ℓ =
1

𝐾
(𝐴̃𝑣)𝑘 .

Hence we can find 𝑣 by finding the𝜆 eigenvalue of
1

𝐾 𝐴̃, and then we extend this eigenvector

to an eigenfunction on the whole of [0, 1] via

𝑓 (𝑦) :=
1

𝜆𝐾

𝐾∑
𝑘=1

𝐴(𝑦, 𝑥𝑘)𝑣𝑘 .

We have here essentially interpolated 𝑓 from the values 𝑓 (𝑥𝑘), and hence we call 𝑋 :=

{𝑥1 , ..., 𝑥𝐾} the interpolation set.

5.4.3 Returning to the matrix setting
We now wish to apply this same approach to approximate the eigendecomposition of

𝐴 ∈ R𝑁 , for 𝑁 large.

Recall the identification of 𝑖 ∈ {1, ..., 𝑁} with the interval [(𝑖−1)/𝑁, 𝑖/𝑁) in the above

note. Then for 𝐾 < 𝑁 , the 𝑥𝑘 correspond to a particular subset of {1, ..., 𝑁} of size 𝐾. But

the ordering of this identification was essentially arbitrary. Hence, 𝑋 can be taken to be a

random subset of {1, ..., 𝑁} of size 𝐾. Define 𝑌 = {1, ..., 𝑁} \ 𝑋.

First, write 𝐴 in the form (
𝐴𝑋𝑋 𝐴𝑋𝑌
𝐴𝑌𝑋 𝐴𝑌𝑌

)
,
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where 𝐴𝑋𝑋 := (𝐴𝑖 𝑗)𝑖∈𝑋,𝑗∈𝑋 etc.

Suppose that 𝐴𝑋𝑋 can be eigendecomposed as 𝐴𝑋𝑋 = 𝑈𝑋Λ𝑋𝑈
−1

𝑋
. Now let 𝑢 𝑖

𝑋
∈ R𝐾×1

be a column eigenvector of 𝐴𝑋𝑋 with eigenvalue 𝜆𝑖 . We seek to extend 𝑢 𝑖
𝑋

to a vector

𝑢 𝑖 ∈ R𝑁 by applying a discrete analogue of a quadrature. That is, let

𝑢 𝑖 :=

(
𝑢 𝑖
𝑋

𝑢 𝑖
𝑌

)
be defined by the following rule:

𝜆𝑖𝑢
𝑖
𝑘
=

∑
𝑗∈𝑋

𝐴𝑘 𝑗𝑢
𝑖
𝑗

which can be observed to be same quadrature trick as before. Restricting to 𝑘 ∈ 𝑌, we

obtain

𝜆𝑖𝑢
𝑖
𝑌 = 𝐴𝑌𝑋𝑢

𝑖
𝑋 .

Let𝑈𝑌 :=
(
𝑢1

𝑌
· · · 𝑢𝐾

𝑌

)
. Then

𝑈𝑌Λ𝑋 = 𝐴𝑌𝑋𝑈𝑋

and so (assuming that 𝐴−1

𝑋𝑋
exists)

𝑈𝑌 = 𝐴𝑌𝑋𝑈𝑋Λ
−1

𝑋 .

Likewise, for a given row eigenvector 𝑣 𝑖
𝑋
∈ R1×𝐾

of 𝐴𝑋𝑋 with eigenvalue 𝜆𝑖 , we define

𝑣 𝑖 :=
(
𝑣 𝑖
𝑋

𝑣 𝑖
𝑌

)
where 𝜆𝑖𝑣 𝑖𝑌 := 𝑣 𝑖

𝑋
𝐴𝑋𝑌 . It follows that the matrix 𝑉𝑌 with 𝑖th row 𝑣 𝑖

𝑌
is

given by

𝑉𝑌 = Λ−1

𝑋 𝑈
−1

𝑋 𝐴𝑋𝑌 .

Finally, we tie this all together into an approximation for 𝐴:

𝐴 ≈
(
𝑈𝑋

𝑈𝑌

)
Λ𝑋

(
𝑈−1

𝑋
𝑉𝑌

)
=

(
𝑈𝑋Λ𝑋𝑈

−1

𝑋
𝑈𝑋Λ𝑋𝑉𝑌

𝑈𝑌Λ𝑋𝑈
−1

𝑋
𝑈𝑌Λ𝑋𝑉𝑌

)
=

(
𝐴𝑋𝑋 𝐴𝑋𝑌
𝐴𝑌𝑋 𝐴𝑌𝑋𝐴

−1

𝑋𝑋
𝐴𝑋𝑌

)
=

(
𝐴𝑋𝑋
𝐴𝑌𝑋

)
𝐴−1

𝑋𝑋

(
𝐴𝑋𝑋 𝐴𝑋𝑌

)
(5.4)

where in the second equality we have made use of 𝐴𝑋𝑋 = 𝑈𝑋Λ𝑋𝑈
−1

𝑋
and the above

expressions for𝑈𝑌 and 𝑉𝑌 .

The key consequence of (5.4) is that it reduces the task of storing 𝐴 (which is 𝒪(𝑁2) in

space) to the task of storing 𝐴𝑋𝑋 , 𝐴𝑋𝑌 , and 𝐴𝑌𝑋 , which is 𝒪(𝑁𝐾) in space. Furthermore,

(5.4) reduces 𝒪(𝑁2) matrix-vector products with 𝐴 to 𝒪(𝑁𝐾) products with the smaller

matrices plus an 𝒪(𝐾3) matrix inversion. When 𝐾 ≪ 𝑁 these are substantial savings.

5.5 Approximating the rank-reduced eigendecomposition
using the Nyström extension

We will now consider how to extract from (5.4) an approximate rank-reduced eigende-

composition of 𝐴, which can then be used to approximate 𝑒𝐴 via (5.2). You might think
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that we are done by the above. Can’t we just set

𝑈 =

(
𝑈𝑋

𝑈𝑌

)
𝑉 =

(
(𝑈−1

𝑋
)𝑇

𝑉𝑇
𝑌

)
and have 𝐴 ≈ 𝑈Λ𝑋𝑉

𝑇
?

Unfortunately, the “extended eigenvectors” we derived above are not orthonormal,

since

𝑉𝑇𝑈 =
(
𝑈−1

𝑋
𝑉𝑌

) (
𝑈𝑋

𝑈𝑌

)
= 𝐼𝐾 +𝑉𝑌𝑈𝑌 = 𝐼𝐾 +Λ−1

𝑋 𝑈
−1

𝑋 𝐴𝑋𝑌𝐴𝑌𝑋𝑈𝑋Λ
−1

𝑋 ≠ 𝐼𝐾 ,

and hence we need a further trick.

We will for simplicity restrict in this section to the case where𝐴 is a symmetric matrix,

and hence we seek a rank 𝐾 eigendecomposition

𝐴 ≈ 𝑈Σ𝑈𝑇

where𝑈 ∈ R𝑁×𝐾
, Σ ∈ R𝐾×𝐾 have𝑈𝑇𝑈 = 𝐼𝐾 and Σ diagonal.

5.5.1 The QR factorisation

Definition 5.5.1 (Gram–Schmidt orthonormalisation). Suppose that we have 𝐾 linearly
independent vectors 𝑥1 , ..., 𝑥𝐾 ∈ R𝑁 , and we want to construct an orthonormal basis
𝑞1 , ..., 𝑞𝐾 for the span of these vectors. The Gram–Schmidt algorithm for computing such
a basis works as follows.

1. To compute 𝑞1 we normalise 𝑥1, i.e. 𝑞1
:= 𝑥1/∥𝑥1∥2.

2. Suppose we have computed 𝑞1 , ..., 𝑞 𝑗−1 so far. We first create a vector orthogonal to
all of these 𝑞𝑘 by zeroing the components in each of these vectors in 𝑥 𝑗 :

𝑞̃ 𝑗 := 𝑥 𝑗 −
𝑗−1∑
𝑘=1

⟨𝑥 𝑗 , 𝑞𝑘⟩𝑞𝑘 .

3. Next, normalise 𝑞 𝑗 := 𝑞̃ 𝑗/∥ 𝑞̃ 𝑗 ∥2.

Exercise 11. Check that {𝑞1 , ..., 𝑞𝐾} is indeed orthonormal and has the same span as

{𝑥1 , ..., 𝑥𝐾}.

Now, let us rewrite this in matrix form. Let

𝐴 :=
(
𝑥1 𝑥2 · · · 𝑥𝐾

)
∈ R𝑁×𝐾 𝑄 :=

(
𝑞1 𝑞2 · · · 𝑞𝐾

)
∈ R𝑁×𝐾

i.e. 𝐴𝑖 𝑗 = (𝑥 𝑗)𝑖 and 𝑄𝑖 𝑗 = (𝑞 𝑗)𝑖 . Next, for 𝑖 , 𝑗 ∈ {1, ..., 𝐾}, define 𝑟𝑖 𝑗 := ⟨𝑞 𝑖 , 𝑥 𝑗⟩ for 𝑖 < 𝑗,

𝑟𝑖 𝑗 := 0 for 𝑖 > 𝑗, and 𝑟 𝑗 𝑗 := ∥ 𝑞̃ 𝑗 ∥2. Then

𝑄𝑖 𝑗 = (𝑞 𝑗)𝑖 =
(𝑥 𝑗)𝑖 −

∑𝑗−1

𝑘=1
⟨𝑥 𝑗 , 𝑞𝑘⟩(𝑞𝑘)𝑖

∥ 𝑞̃ 𝑗 ∥2

=
𝐴𝑖 𝑗 −

∑𝑗−1

𝑘=1
𝑟𝑘 𝑗𝑄𝑖𝑘

𝑟 𝑗 𝑗

and so by rearranging

𝐴𝑖 𝑗 =

𝐾∑
𝑘=1

𝑄𝑖𝑘𝑟𝑘 𝑗 = (𝑄𝑅)𝑖 𝑗 .
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Theorem 5.5.1 (Thin QR factorisation). Let 𝐴 ∈ R𝑁×𝐾
have rank 𝐾, where 𝐾 ≤ 𝑁 .

Then there exists 𝑄 ∈ R𝑁×𝐾
with orthonormal columns and 𝑅 ∈ R𝐾×𝐾 upper

triangular such that

𝐴 = 𝑄𝑅.

Observe that therefore 𝑄𝑇𝑄 = 𝐼𝐾 .

Note. In practice, the QR factorisation is never computed in this way, as it is numerically

unstable. See [GVL96, Chapter 5] for details.

5.5.2 The Nyström-QR method
First, compute the thin QR factorisation

𝑄𝑅 =

(
𝐴𝑋𝑋
𝐴𝑌𝑋

)
where 𝑄 ∈ R𝑁×𝐾

has orthonormal columns, and 𝑅 ∈ R𝐾×𝐾 is upper triangular.

Note. The requirement that

(
𝐴𝑋𝑋
𝐴𝑌𝑋

)
has full rank is entailed by the assumption that 𝐴𝑋𝑋

is invertible. If this does not hold, it is usually wise to resample 𝑋, or restrict to the subset

of 𝑋 for which this does hold. Since 𝐴𝑋𝑋 is small, its condition number can be cheaply

computed.

Then the Nyström approximation for 𝐴 (5.4) can be written as

𝐴 ≈ 𝑄𝑅𝐴−1

𝑋𝑋𝑅
𝑇𝑄𝑇 .

Next, compute the eigendecomposition

𝑅𝐴−1

𝑋𝑋𝑅
𝑇 = ΦΣΦ𝑇 ,

where Φ ∈ R𝐾×𝐾 is orthogonal and Σ ∈ R𝐾×𝐾 is diagonal. It follows that 𝐴 can be

diagonalised as

𝐴 ≈ (𝑄Φ)Σ(𝑄Φ)𝑇 =: 𝑈Σ𝑈𝑇

where𝑈 := 𝑄Φ and hence𝑈𝑇𝑈 = Φ𝑇𝑄𝑇𝑄Φ = Φ𝑇 𝐼𝐾Φ = 𝐼𝐾 .

Note. This method is 𝒪(𝑁𝐾2) in time and 𝒪(𝑁𝐾) in space.

5.6 Tying this all together

Suppose we have 𝐴 ∈ R𝑁×𝑁
a symmetric matrix. Suppose we can compute on demand

any particular 𝐴𝑖 𝑗 . Our goal in this chapter has been to devise a method to compute

𝑒 𝑡𝐴𝑣

for various 𝑡 ∈ R and 𝑣 ∈ R𝑁 , without ever using more that 𝒪(𝑁) space or time.

The method described in this chapter is then as follows.

1. Choose 𝐾 ≪ 𝑁 , and choose 𝑋 ⊆ {1, ..., 𝑁} as a random subset with |𝑋 | = 𝐾. Let

𝑌 := {1, ..., 𝑁} \ 𝑋. This step is 𝒪(𝑁) in space and time.
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2. Compute 𝐴𝑋𝑋 and 𝐴𝑌𝑋 . These are the only bits of 𝐴 we will ever use. This step is

𝒪(𝑁𝐾) in space and time.

3. Compute the thin QR factorisation

𝑄𝑅 =

(
𝐴𝑋𝑋
𝐴𝑌𝑋

)
.

This step is 𝒪(𝑁𝐾) in space and 𝒪(𝑁𝐾2) in time.

4. Compute the eigendecomposition

𝑅𝐴−1

𝑋𝑋𝑅
𝑇 = ΦΣΦ𝑇 ,

This step is 𝒪(𝐾2) in space and 𝒪(𝐾3) in time.

5. Compute𝑈 = 𝑄Φ. This step is 𝒪(𝑁𝐾) in space and 𝒪(𝑁𝐾2) in time.

6. For each 𝑡 and 𝑣, compute (recall (5.2))

𝑒 𝑡𝐴𝑣 ≈ 𝑣 +𝑈((𝑒 𝑡Σ − 𝐼𝐾)(𝑈𝑇𝑣)).

This step is 𝒪(𝑁) in space and 𝒪(𝑁𝐾) in time.

Recall that this final step works because 𝐴 ≈ 𝑈Σ𝑈𝑇
and𝑈𝑇𝑈 = 𝐼𝐾 .

5.7 The singular value decomposition (SVD)

5.7.1 The SVD
“There are two types of people in the world: those who think the SVD is the most
useful thing since the wheel, and those who haven’t learned about the SVD yet.”
— J. F. Williams, talk at TU Delft in 2019.

Lemma 5.7.1. Let 𝑟 ≤ 𝑁 and 𝑈1 ∈ R𝑁×𝑟
have orthonormal columns. Then there

exists𝑈2 ∈ R𝑁×(𝑁−𝑟)
such that

(
𝑈1 𝑈2

)
is orthogonal.

Proof. Let 𝑊 ⊆ R𝑁 be the span of the columns of 𝑈1. Take the columns of 𝑈2 to be an

orthonormal basis of𝑊⊥
, the orthogonal complement of𝑊 . □

Theorem 5.7.2 (Existence of the SVD). Let 𝐴 ∈ R𝑀×𝑁
then there exist orthogonal

matrices 𝑈 ∈ R𝑀×𝑀
and 𝑉 ∈ R𝑁×𝑁

and a diagonal matrix Σ ∈ R𝑀×𝑁
with non-

negative entries, such that

𝐴 = 𝑈Σ𝑉𝑇 .

This is called the singular value decomposition (SVD) of 𝐴. The columns of 𝑈 are

called the left singular vectors, the columns of 𝑉 are called the right singular vectors,
and the diagonal entries of Σ are called the singular values.

Proof. It is equivalent to show that orthogonal𝑈,𝑉 exist such that𝑈𝑇𝐴𝑉 = Σ. Define

∥𝐴∥ := max

𝑣∈R𝑁 ,∥𝑣∥2=1

∥𝐴𝑣∥2.

This a continuous function maximised on a compact set, so the maximum is attained at

some 𝑣 ∈ R𝑁 with ∥𝑣∥2 = 1. Define 𝑢 ∈ R𝑀 by 𝑢 := ∥𝐴∥−1𝐴𝑣, so ∥𝑢∥2 = 1.
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By the above lemma, there exist 𝑈2 ∈ R𝑀×(𝑀−1)
and 𝑉2 ∈ R𝑁×(𝑁−1)

such that 𝑈 :=(
𝑢 𝑈2

)
and 𝑉 :=

(
𝑣 𝑉2

)
are orthogonal.

Then

𝑈𝑇𝐴𝑉 =

(
𝑢𝑇𝐴𝑣 𝑢𝑇𝐴𝑉2

𝑈𝑇
2
𝐴𝑣 𝑈𝑇

2
𝐴𝑉2

)
=

(
∥𝐴∥ 𝑤𝑇

0 𝐵

)
=: 𝐴1

for𝑤 ∈ R𝑁−1
and 𝐵 ∈ R(𝑀−1)×(𝑁−1)

, since 𝑢𝑇𝐴𝑣 = ∥𝐴∥𝑢𝑇𝑢 = ∥𝐴∥ and𝑈𝑇
2
𝐴𝑣 = ∥𝐴∥𝑈𝑇

2
𝑢 =

0. We seek to show that 𝑤 = 0. Consider



𝐴1

(
∥𝐴∥
𝑤

)



2

2

=





(∥𝐴∥2 + 𝑤𝑇𝑤
𝐵𝑤

)



2

2

≥ (∥𝐴∥2 + 𝑤𝑇𝑤)2

and hence ∥𝐴1∥2 ≥ ∥𝐴∥2 + 𝑤𝑇𝑤. But since 𝑈,𝑉 are orthogonal, ∥𝐴1∥ = ∥𝐴∥. Hence

𝑤𝑇𝑤 = 0, and so 𝑤 = 0.

By induction, we have that there exist orthogonal matrices 𝑈1 ∈ R(𝑀−1)×(𝑀−1)
and

𝑉1 ∈ R(𝑁−1)×(𝑁−1)
and a diagonal matrix Σ1 ∈ R(𝑀−1)×(𝑁−1)

with non-negative entries,

such that𝑈𝑇
1
𝐵𝑉1 = Σ1. Then

𝑈̃ := 𝑈

(
1 0

0 𝑈1

)
𝑉̃ := 𝑉

(
1 0

0 𝑉1

)
are orthogonal matrices and

𝑈̃𝑇𝐴𝑉̃ =

(
1 0

0 𝑈𝑇
1

)
𝐴1

(
1 0

0 𝑉1

)
=

(
∥𝐴∥ 0

0 𝑈𝑇
1
𝐵𝑉1

)
=

(
∥𝐴∥ 0

0 Σ1

)
=: Σ,

completing the proof. □

5.7.2 The best possible rank 𝐾 approximation

Theorem 5.7.3 (Eckart–Young theorem [EY36], see also [GVL96, Theorem 2.5.3]).
Let 𝐴 ∈ R𝑀×𝑁

have SVD

𝐴 = 𝑈Σ𝑉𝑇 .

Then with respect to ∥ · ∥ the spectral or Frobenius norms on R𝑀×𝑁
, the best rank 𝐾

approximation to 𝐴, i.e.,

𝐴𝐾 := arg min

𝑋∈R𝑀×𝑁 ,rank(𝑋)≤𝐾
∥𝑋 − 𝐴∥

is given by the reduced SVD
𝐴𝐾 = 𝑈𝐾Σ𝐾𝑉

𝑇
𝐾

where𝑈𝐾 = (𝑈𝑖 𝑗)𝑖=1..𝑀,𝑗=1..𝐾 , Σ𝐾 = (Σ𝑖 𝑗)𝑖=1..𝐾,𝑗=1..𝐾 , and 𝑉𝐾 = (𝑉𝑖 𝑗)𝑖=1..𝑁 ,𝑗=1..𝐾 .

Proof. Left as an exercise. □



Chapter 6

Image segmentation with the
graph MBO scheme

6.1 Turning an image into a graph
To turn an image ℐ : 𝑉 → R𝑑 into a graph, we must first specify the vertex set 𝑉 and

edge set set 𝐸. But now you see why we have been using 𝑉 to denote the domain of a

discrete image: our vertex set is precisely the set of pixels in the image. For 𝐸, for now

we shall simply take 𝐸 = {(𝑖 , 𝑗) ∈ 𝑉2 | 𝑖 ≠ 𝑗}.
The important information of the image we shall encode in the edge weights 𝜔. These

edge weights are computed in two steps. First, the pixels of the image are mapped to

feature vectors 𝑧 : 𝑉 → R𝑞 . The philosophy behind these feature vectors is that pixels

which are “similar” should have nearby feature vectors, where what “similar” means is

application-specific.

Example 1 (Simple example). Suppose that 𝑉 = {1, ..., 𝑛1} × {1, ..., 𝑛2}. One simple way

to define 𝑧 is that for each pixel 𝑖 =: (𝑖1 , 𝑖2) ∈ 𝑉 , the feature vector 𝑧𝑖 can be defined as:

𝑧𝑖 := (𝒦(𝑖1 − 𝑗1 , 𝑖2 − 𝑗2)ℐ(𝑗1 , 𝑗2))−𝑚≤𝑖1−𝑗1 ,𝑖2−𝑗2≤𝑚 .

That is, 𝑧𝑖 stacks together the pixel values of each pixel in the (2𝑚 + 1) × (2𝑚 + 1) square

centred at 𝑖, weighted by a kernel 𝒦 .

The above example is only one way of doing things, see e.g. [BF12,CGS
+
17,VZ05] for

a discussion of options. A particularly important recent technique is using deep learning

to construct the features, see e.g. [MMS
+
22].

Given these feature vectors, we now compute the weights using some similarity func-
tion evaluated on 𝑧𝑖 and 𝑧 𝑗 . Some common choices include:

• The Gaussian function:

𝜔𝑖 𝑗 := 𝑒−𝑑(𝑧𝑖 ,𝑧 𝑗 )
2/𝜎2

where the choice of metric 𝑑 is also important, common are the Euclidean and ℓ 1

distances.

• The Zelnik-Manor–Perona [ZMP04] approach: Given a metric 𝑑(𝑧𝑖 , 𝑧 𝑗), define 𝜎𝑖 :=

𝑑(𝑧𝑖 , 𝑧𝑀) where 𝑧𝑀 is the 𝑀th
closet feature vector to 𝑧𝑖 . Then:

𝜔𝑖 𝑗 := 𝑒−𝑑(𝑧𝑖 ,𝑧 𝑗 )
2/𝜎𝑖𝜎𝑗

This is preferred if there are many scales which we desire to segment.
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• Other kernels: one might also use other kernel functions, e.g.

𝜔𝑖 𝑗 := 𝑒−𝑑(𝑧𝑖 ,𝑧 𝑗 )/𝜎 , or 𝜔𝑖 𝑗 :=
1√

𝑑(𝑧𝑖 , 𝑧 𝑗)2 + 𝑐2

.

• Cosine angle (see [HSB15]):

𝜔𝑖 𝑗 := exp

(
− 1

2𝜎2

(
1 −

⟨𝑧𝑖 , 𝑧 𝑗⟩
| |𝑧𝑖 | |2 | |𝑧 𝑗 | |2

)
2

)
.

Note that this, unlike all the others, is scale-independent.

These weights are then sometimes renormalised according to the formula:

𝜔̃𝑖 𝑗 =
𝜔𝑖 𝑗

𝑑
1−𝑞/2

𝑖
𝑑

1−𝑞/2

𝑗

.

6.2 Image segmentation as a graph classification task
Recall the image segmentation task: We have been given an image ℐ : 𝑉 → R𝑑, and

we wish to find a 𝑢 : 𝑉 → 𝐿, possibly with the help of a given a priori segmentation

𝑓 : 𝑍 → 𝐿 (with 𝑍 ⊆ 𝑉) such that we desire 𝑢 to satisfy 𝑢 |𝑍 ≈ 𝑓 .
By the above, we can encode the image 𝑥 as a graph 𝐺 = (𝑉, 𝐸, 𝜔). The 𝑢 we seek can

now be re-understood as a function on our graph 𝐺. The idea of this chapter is then as

follows:

• We seek a 𝑢 minimising the Ginzburg–Landau energy (with fidelity) on 𝐺. This 𝑢
will by construction also serve as a segmentation of the image ℐ.

• We will find this 𝑢 by evolving the graph MBO scheme (with fidelity forcing),

which we saw in Chapter 4 was a numerical scheme for the Allen–Cahn gradient

flow of the Ginzburg–Landau energy.

However, there is a further question: why should the 𝑢 we have derived in this way

be a good segmentation? Recall the graph Ginzburg–Landau energy (with fidelity):

GL
(𝑟,𝑠)
𝜀,𝜇, 𝑓 (𝑢) :=

1

2

| |∇(𝐷−𝑠𝑢)| |2ℰ + 1

𝜀
⟨𝑊 ◦ 𝑢, 1⟩𝒱 ,𝑟−𝑠 +

1

2

⟨𝑢 − 𝑓 , 𝑀(𝑢 − 𝑓 )⟩𝒱 ,𝑟−𝑠 ,

The first term penalises the segmentation 𝑢 if two vertices with a high edge weight are

in different segments, encouraging the segmentation to group similar vertices together.

The second term wants the segmentation to be binary. The third term penalises 𝑢 for

disagreeing with the a priori segmentation, propagating those a priori labels to the rest of

the vertices.

6.3 The basic algorithm for image segmentation via the
MBO scheme

For any time step 0 < 𝜏 ≤ 𝜀 note that

𝒮𝜏𝑢 = 𝑒−𝜏(ℒ+𝑀)𝑢 + 𝑏 (6.1)

where 𝑏 := 𝐹𝜏(ℒ +𝑀)𝑀 𝑓 , which is independent of 𝑢.

A starting point for an algorithm could be the following steps.
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1. Parameters: Time step 𝜏 > 0, parameter 𝜀 > 0, fidelity parameter 𝜇 ∈ 𝒱[0,∞)
collected in the matrix 𝑀 = diag(𝜇), and normalisation parameters 𝑟, 𝑠.

2. Input: Image ℐ : 𝑉 → Rℓ , training data 𝑍, and labels 𝑓 supported on 𝑍.

3. Compute 𝜔 from ℐ, and encode ℐ as a graph 𝐺 = (𝑉, 𝐸, 𝜔) with 𝐸 = {(𝑖 , 𝑗) ∈
𝑉 ×𝑉 | 𝑖 ≠ 𝑗}.

4. Compute ℒ and therefore 𝑒−𝜏(ℒ+𝑀)
and 𝑏.

5. From some initial condition 𝑢0, compute the MBO sequence 𝑢𝑛 , by alternately

diffusing (applying 𝑆𝜏) and thresholding.

6. Stop when some stopping condition is met, at 𝑛 = 𝑛
final

.

7. Output: 𝑢𝑛
final

.

But this won’t work, because of the size of the matrices.

6.4 Computing graph diffusion
Recall that to compute graph diffusion, we need to compute:

𝒮𝜏𝑢 = 𝑒−𝜏(ℒ+𝑀)𝑢︸      ︷︷      ︸
(𝐴)

+ 𝐹𝜏(ℒ +𝑀)𝑀 𝑓︸            ︷︷            ︸
(𝐵)

.

6.4.1 The Strang formula
To compute (A), we use a Strang formula method.

Theorem 6.4.1 (Strang formula). For all 𝑁 ∈ N and 𝑋,𝑌 ∈ R𝑁×𝑁
,

𝑒𝑋+𝑌 = (𝑒𝑌/2𝑘 𝑒𝑋/𝑘 𝑒𝑌/2𝑘)𝑘 + 𝒪(𝑘−2).

Proof. By considering the Taylor series and collecting terms, one finds that 𝑒𝑋
′+𝑌′

and

𝑒𝑌
′/2𝑒𝑋

′
𝑒𝑌

′/2
agree until the third-order terms. Hence

𝑒𝑋/𝑘+𝑌/𝑘 = 𝑒𝑌/2𝑘 𝑒𝑋/𝑘 𝑒𝑌/2𝑘 + 𝒪(𝑘−3).

Taking the 𝑘th
power of both sides completes the proof. □

6.4.2 The Nyström-QR method for ℒ
To apply the Nyström-QR method from Chapter 5 to ℒ(𝑟,𝑠)

, there are a couple extra steps.

First, we use (5.4) to approximate the degrees:

𝑑 = 𝜔1 ≈
(
𝜔𝑋𝑋

𝜔𝑌𝑋

)
𝜔−1

𝑋𝑋

(
𝜔𝑋𝑋 𝜔𝑋𝑌

)
1 =: 𝑑̂.

Next, we define 𝐷̂ = diag(𝑑̂) and apply the Nyström-QR technique to 𝐷̂−(𝑟+𝑠)/2𝜔𝐷̂−(𝑟+𝑠)/2

to get

𝜔̃ := 𝐷−(𝑟+𝑠)/2𝜔𝐷−(𝑟+𝑠)/2 ≈ 𝐷̂−(𝑟+𝑠)/2𝜔𝐷̂−(𝑟+𝑠)/2 ≈ 𝑈Σ𝑈𝑇 .

Finally,

ℒ((𝑟+𝑠)/2,(𝑟+𝑠)/2) = 𝐷1−𝑟−𝑠 − 𝐷−(𝑟+𝑠)/2𝜔𝐷−(𝑟+𝑠)/2 ≈ 𝐷̂1−𝑟−𝑠 −𝑈Σ𝑈𝑇 .

Then we get an approximate SVD for ℒ(𝑟,𝑠)

ℒ(𝑟,𝑠) = 𝐷(𝑠−𝑟)/2ℒ((𝑟+𝑠)/2,(𝑟+𝑠)/2)𝐷(𝑟−𝑠)/2 ≈ 𝐷̂1−𝑟−𝑠 − (𝐷̂(𝑠−𝑟)/2𝑈)Σ(𝐷̂(𝑟−𝑠)/2𝑈)𝑇 .
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6.4.3 Computing (A)

Given ℒ ≈ 𝐴 − 𝑈1Σ𝑈
𝑇
2

with 𝑈𝑇
2
𝑈1 = 𝐼𝐾 and 𝐴 a diagonal matrix, for any 𝑢 ∈ 𝒱 we

compute (writing 𝛿𝑡 := 𝜏/𝑘)

𝑒−𝜏(ℒ+𝑀)𝑢 ≈ 𝑒−𝜏(𝐴+𝑀−𝑈1Σ𝑈
𝑇
2
)

=

(
𝑒−

1

2
𝜏/𝑘(𝐴+𝑀)𝑒𝜏/𝑘𝑈1Σ𝑈

𝑇
2 𝑒−

1

2
𝜏/𝑘(𝐴+𝑀)

) 𝑘
𝑢 + 𝒪(𝑘−2)

=

(
𝑒−

1

2
𝛿𝑡(𝐴+𝑀)

(
𝐼 +𝑈1(𝑒𝛿𝑡Σ − 𝐼𝐾)𝑈𝑇

2

)
𝑒−

1

2
𝛿𝑡(𝐴+𝑀)

) 𝑘
𝑢 + 𝒪(𝛿𝑡2).

(6.2)

That is, we define 𝑒−𝜏(ℒ+𝑀)𝑢 = 𝑣𝑘 where 𝑣0 = 𝑢 and

𝑣𝑟+1 := 𝑒−𝛿𝑡(𝐴+𝑀)𝑣𝑟 + 𝑒−
1

2
𝛿𝑡(𝐴+𝑀)𝑈1(𝑒𝛿𝑡Σ − 𝐼𝐾)𝑈𝑇

2
𝑒−

1

2
𝛿𝑡(𝐴+𝑀)𝑣𝑟

= 𝑎1(𝛿𝑡) ⊙ 𝑣𝑟 + 𝑎3(𝛿𝑡) ⊙
(
𝑈1

(
𝑎2(𝛿𝑡) ⊙

(
𝑈𝑇

2
(𝑎3(𝛿𝑡) ⊙ 𝑣𝑟)

)))
(6.3)

where ⊙ is the Hadamard (i.e. elementwise) product, 𝑎1(𝛿𝑡) := exp(−𝛿𝑡(𝜇 + diag(𝐴))),
𝑎2(𝛿𝑡) := exp(𝛿𝑡 diag(Σ)) − 1𝐾 , and 𝑎3(𝛿𝑡) := exp(− 1

2
𝛿𝑡(𝜇 + diag(𝐴))) is the elementwise

square root of 𝑎1(𝛿𝑡) (where exp is applied elementwise, and 1𝐾 is the vector of 𝐾 ones).

6.4.4 Computing (B)
Computing (B) is a little less glamorous, but the upside is that it only needs to be

computed once, since it is independent of 𝑢. The most straightforward way to compute

it is to observe that it equals 𝒮𝜏0. Hence, we want to compute a solution to (4.2) from

initial condition 0. One way to do this is compute (4.2), i.e.

𝑑𝑢

𝑑𝑡
= −ℒ𝑢(𝑡) −𝑀(𝑢(𝑡) − 𝑓 ),

as in [MKB13] via the semi-implicit Euler scheme

𝑢𝑛+1 − 𝑢𝑛
𝛿𝑡

= −ℒ𝑢𝑛+1 −𝑀(𝑢𝑛 − 𝑓 ).

This scheme is implicit in ℒ because this system is stiff, i.e. there is a large ratio between

the small and large eigenvalues. This has solution

𝑢𝑛+1 = (𝐼 + 𝛿𝑡ℒ)−1(𝑢𝑛 − 𝛿𝑡𝑀(𝑢𝑛 − 𝑓 ))
≈ (𝐼 + 𝛿𝑡𝐴 − 𝛿𝑡𝑈1Σ𝑈

𝑇
2
)−1(𝑢𝑛 − 𝛿𝑡𝑀(𝑢𝑛 − 𝑓 )).

This works best in the 𝑟 + 𝑠 = 1 case, where 𝐴 = 𝐼 and so

𝑢𝑛+1 ≈ ((1 + 𝛿𝑡)𝐼 − 𝛿𝑡𝑈1Σ𝑈
𝑇
2
)−1(𝑢𝑛 − 𝛿𝑡(𝑀𝑢𝑛 − 𝑓 ))

≈ 𝑈1((1 + 𝛿𝑡)𝐼𝐾 − 𝛿𝑡Σ)−1𝑈𝑇
2
(𝑢𝑛 − 𝛿𝑡(𝑀𝑢𝑛 − 𝑓 )),

where we have used the approximation 𝐼 ≈ 𝑈1𝑈
𝑇
2

. Thus, we define 𝑏 = 𝑣𝑘 where 𝑣0 = 0
and

𝑣𝑟+1 := 𝑈1(𝑎0 ⊙ (𝑈𝑇
2
(𝑣𝑟 − 𝛿𝑡(𝜇 ⊙ 𝑣𝑟 − 𝑓 )))), (6.4)

where 𝑎0 = (1 + 𝛿𝑡 − 𝛿𝑡 diag(Σ))−1
.
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Note. In the general case, this can still be computed using the Woodbury identity:

(𝐼+𝛿𝑡𝐴−𝛿𝑡𝑈1Σ𝑈
𝑇
2
)−1 = (𝐼+𝛿𝑡𝐴)−1

(
𝐼 + 𝛿𝑡𝑈1(−Σ−1 + 𝛿𝑡𝑈𝑇

2
(𝐼 + 𝛿𝑡𝐴)−1𝑈1)−1𝑈𝑇

2
(𝐼 + 𝛿𝑡𝐴)−1

)
.

That is, let 𝑎4 := (1 + 𝛿𝑡 diag(𝐴))−1
. Then

(𝐼 + 𝛿𝑡𝐴 − 𝛿𝑡𝑈1Σ𝑈
𝑇
2
)−1𝑣 = 𝑎4 ⊙ (𝑣 + 𝛿𝑡(𝑈1𝑤))

where 𝑤 solves

(−Σ−1 + 𝛿𝑡𝑈𝑇
2
(𝑎4 ⊙𝑈1))𝑤 = 𝑈𝑇

2
(𝑎4 ⊙ 𝑣).

This is more cumbersome than the 𝑟 + 𝑠 = 1 case, and becomes less well-behaved if Σ is

not invertible.

6.5 Interlude: numerically testing these methods

6.5.1 Comparison of methods on a toy image
In this section, we shall compare the accuracy of the above methods for two approxima-

tion tasks. First, the task of approximating the symmetric normalised Laplacian ℒ(1/2,1/2)
,

and second, the task of approximating 𝑒−𝑡ℒ
(1/2,1/2)

for 𝑡 ∈ {10
−2 , 10

−1 , 1, 10}. These will

both be performed on a graph built from a small enough image for us to compute the

ground truth.

In particular, we will consider graphs built on the pixels of the 60×60 greyscale image

from Figure 6.1.
1

Hence, 𝑉 = {1, ..., 3600}, and for 𝑖 ≠ 𝑗 ∈ 𝑉 we will define

𝜔𝑖 𝑗 = 𝑒−(ℐ𝑖−ℐ𝑗 )
2

,

where ℐ𝑖 ∈ [0, 1] is the intensity value of pixel 𝑖.

We will consider the following methods for these tasks, for 𝐾 ∈ {50, 100, 150, ..., 500}:

i. Optimal rank 𝐾 method: Approximate ℒ(1/2,1/2)
by 𝐼 minus the best rank 𝐾 ap-

proximation of 𝜔̃, i.e.

ℒ(1/2,1/2) ≈ 𝐼 −𝑈
best

Σ
best
𝑈𝑇

best
,

whereΣ
best

is a 𝐾×𝐾 diagonal matrix with diagonal the largest negative eigenvalues

of 𝜔̃, as these correspond to the largest eigenvalues of ℒ(1/2,1/2)
, and𝑈

best
is an𝑁×𝐾

matrix of the corresponding eigenvectors. We approximate the matrix exponential

using intead the largest positive eigenvalues of 𝜔̃ (as these correspond to the largest

eigenvalues of 𝑒 𝑡𝜔̃) and the corresponding eigenvectors.

ii. Nyström method: We will compute rank 𝐾 decomposition:

𝜔̃ ≈ 𝑈𝑄𝑅Σ𝑄𝑅𝑈
𝑇
𝑄𝑅

using the Nyström-QR method. We will then approximate ℒ(1/2,1/2)
and 𝑒−𝑡ℒ

(1/2,1/2)

as in the previous method. As these methods are randomised we will repeat them

ten times and present the median error and mean times in the below results.

The two tests we shall perform are as follows:

1
Defined by [rand(30) magic(30)/max(max(magic(30))); 0.5*ones(30) min(max(0,0.5 +

randn(30)/2),1);] in Matlab.
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Figure 6.1: Test 60 × 60 image for numerical experiments.
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A. Given an approximation 𝐿 for ℒ(1/2,1/2)
, we will compute the relative Frobenius error

∥𝐿 − ℒ(1/2,1/2)∥2

𝐹

∥ℒ(1/2,1/2)∥2

𝐹

,

where ∥𝐴∥2

𝐹
= tr(𝐴𝑇𝐴) = ∑

𝑖 , 𝑗 𝐴
2

𝑖 𝑗
is the Frobenius norm.

B. Given an approximation 𝐸 for 𝑒−𝑡ℒ
(1/2,1/2)

, we likewise will compute

∥𝐸 − 𝑒−𝑡ℒ(1/2,1/2) ∥2

𝐹

∥𝑒−𝑡ℒ(1/2,1/2) ∥2

𝐹

.

6.5.2 Results
We present the results and timings for task (A) in Figure 6.2.
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Figure 6.2: Relative Frobenius errors (left) and computation times (right) for the rank 𝐾
approximate eigendecompositions of ℒ(1/2,1/2)

.

We present the results for task (B) in Figure 6.3. We omit the timings as they do not

vary significantly between methods.

6.6 The full pipeline
We summarise the full pipeline in Algorithm 1.
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Algorithm 1 Segmentation algorithm using the MBO scheme.

1: function MBOSeg(ℐ , 𝜇, 𝑓 , 𝑉 , 𝑍, 𝐾, 𝛼, 𝛿, 𝜎, 𝜏, 𝑘, 𝑘𝑏 , 𝑟 , 𝑠) ⊲ Segments an

2: image ℐ by iterating an MBO scheme. ℐ : 𝑉 → Rℓ , 𝜇 ∈ 𝒱[0,∞), 𝑓 ∈ 𝒱, 𝑘, 𝑘𝑏 , 𝐾 ∈ N,

3: 𝛼, 𝛿, 𝜎, 𝜏 ∈ [0,∞), 𝑟, 𝑠 ∈ R. Requires: 𝐾 ≪ |𝑉 |, 𝜇|𝑉\𝑍 = 𝑓 |𝑉\𝑍 = 0, 𝑟 + 𝑠 = 1.

—— Encoding ℐ as a graph ——
4: 𝑧 = feature_map(ℐ) ⊲ Computes the feature vectors 𝑧 of ℐ
5: Ω : (𝑖 , 𝑗) ↦→ 𝑒−∥𝑧𝑖−𝑧 𝑗 ∥

2

2
/𝜎2

⊲ Defines a function that maps (𝑖 , 𝑗) to its weight 𝜔𝑖 𝑗

—— Nyström-QR for ℒ(𝑟,𝑠) ——
6: 𝑋 = random_subset(𝑉, 𝐾) ⊲ Computes a random subset of 𝑉 of size 𝐾
7: 𝜔𝑋𝑋 = Ω(𝑋, 𝑋) ⊲ Applies Ω to build the sub-matrix of 𝜔 with 𝑖 , 𝑗 ∈ 𝑋
8: 𝜔𝑉𝑋 = Ω(𝑉, 𝑋) ⊲ Builds the sub-matrix of 𝜔 with 𝑖 ∈ 𝑉 and 𝑗 ∈ 𝑋
9: 𝑑̂ = 𝜔𝑉𝑋

(
𝜔−1

𝑋𝑋

(
𝜔𝑇
𝑉𝑋

1
) )

⊲ Uses (5.4) to approximate 𝑑 = 𝜔1
10: 𝜔̃𝑉𝑋 = 𝑑̂−(𝑟+𝑠)/2 ⊙ 𝜔𝑉𝑋 ⊲ Applying ⊙ columnwise, i.e. (𝜔̃𝑉𝑋)𝑖 𝑗 = 𝑑̂

−(𝑟+𝑠)/2

𝑖
(𝜔𝑉𝑋)𝑖 𝑗

11: [𝑄, 𝑅] = thinQR(𝜔̃𝑉𝑋) ⊲ Computes thin QR factorisation 𝜔̃𝑉𝑋 = 𝑄𝑅
12: 𝑆 = 𝑅𝜔−1

𝑋𝑋
𝑅𝑇 ⊲ Computes 𝑆 ∈ R𝐾×𝐾

13: 𝑆 = (𝑆 + 𝑆𝑇)/2 ⊲ Corrects symmetry-breaking computational errors

14: [Φ,Σ] = eig(𝑆) ⊲ Computes eigendecomposition 𝑆 = ΦΣΦ𝑇

15: 𝑈 = 𝑄Φ

16: 𝑈1 = 𝑑̂(𝑠−𝑟)/2 ⊙𝑈
17: 𝑈2 = 𝑑̂(𝑟−𝑠)/2 ⊙𝑈 ⊲ ℒ(𝑟,𝑠) ≈ 𝐷̂1−𝑟−𝑠 −𝑈1Σ𝑈

𝑇
2

—— Computing 𝑏 ——
⊲ Method below requires 𝑟 + 𝑠 = 1; see Section 6.4.4 for general case

18: 𝑎0 = (1 + 𝜏/𝑘𝑏 − 𝜏/𝑘𝑏 diag(Σ))−1 ⊲ Reciprocation applied componentwise

19: 𝑏 = 0
20: for 𝑗 = 1 to 𝑘𝑏 do
21: 𝑏 = 𝑈1(𝑎0 ⊙ (𝑈𝑇

2
(𝑏 − 𝜏/𝑘𝑏(𝜇 ⊙ (𝑏 − 𝑓 ))))) ⊲ Euler scheme step, see (6.4)

22: end for
—— Set-up for MBO scheme ——

23:

24: 𝑎1 = exp(−𝜏/𝑘(𝜇 + 𝑑̂1−𝑟−𝑠)) ⊲ exp applied componentwise

25: 𝑎2 = exp(𝜏/𝑘 diag(Σ)) − 1𝐾 ⊲ exp applied componentwise

26: 𝑎3 = sqrt(𝑎1) ⊲ 𝑎1, 𝑎2, and 𝑎3 are for the Strang formula iterations, see (6.3)

27: 𝑢0 = 𝛼𝜒𝑉\𝑍 + 𝑓 ⊲ Initial condition: the a priori segmentation on

28: the training data pixels, 𝛼 on the rest

—— The MBO scheme ——
29: 𝑚 = 0

30: while ∥𝑢𝑚 − 𝑢𝑚−1∥2

2
/∥𝑢𝑚 ∥2

2
≥ 𝛿 do ⊲ Until stopping condition met

—— Diffuse 𝑢𝑚 ——
31: 𝑣 = 𝑢𝑚

32: for 𝑗 = 1 to 𝑘 do
33: 𝑣 = 𝑎1 ⊙ 𝑣 + 𝑎3 ⊙

(
𝑈1

(
𝑎2 ⊙

(
𝑈𝑇

2
(𝑎3 ⊙ 𝑣)

) ) )
⊲ Strang formula step, see (6.3)

34: end for
35: 𝑣 = 𝑣 + 𝑏 ⊲ 𝑣 ≈ 𝒮𝜏𝑢

𝑚
, see (6.1)

—— Threshold 𝑣 ——
36: 𝑉2 = {𝑖 ∈ 𝑉 | 𝑣𝑖 ≥ 1

2
}

37: 𝑢𝑚+1 = 𝜒𝑉2
⊲ Applies the MBO thresholding

38: 𝑚 = 𝑚 + 1

39: end while
40: return 𝑢𝑚
41: end function
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6.7 Results
We give some examples of segmentations using the above method on cow images from

the Microsoft Research Cambridge Object Recognition Image Database. For more details

on these examples, see Budd, Van Gennip, and Latz [BvL21] and Budd [Bud22].

6.7.1 RGB example

Figure 6.4: Two cows example. Top-left: the reference data image. Top-right: the image

to be segmented. Bottom-left: the a priori segmentation 𝑓 (which is a segmentation of

the reference data image). Bottom-right: the ground truth segmentation of the top-right

image. Both segmentations were drawn by hand by the authors.
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Figure 6.5: Progression of MBO scheme over the course of its iterations. Reproduced

from [Bud22, Fig. 5.11(c)].
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Figure 6.6: Image masked with MBO segmentation, reproduced from [Bud22, Fig. 5.9(d)].

The segmentation accuracy is 98.4622% and run time was 2.5𝑠.
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6.7.2 Greyscale example

Data image Image

Figure 6.7: Greyscale two cows example. Left: reference data image. Right: image to be

segmented. Ground truth segmentations are as in Figure 6.4.



76 CHAPTER 6. IMAGE SEGMENTATION WITH THE GRAPH MBO SCHEME

 = 150,    = 1000,   

error = 5.54%,   

time = 6.628s

Figure 6.8: Progression of MBO segmentation of greyscale two cows. The higher run

time is due to using a larger𝐾 in the Nyström-QR. Reproduced from [Bud22, Fig. 5.16(c)].
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